Органы амебы. Кишечная амеба у человека: строение цист, жизненный цикл

Социальные амебы Dictyostelium discoideum делятся на три «пола», каждый из которых может спариваться с любым из двух других. Оказалось, что половая принадлежность амеб определяется единственным генетическим локусом, содержащим 1, 2 или 3 гена. Ключевую роль играют гены двух типов, непохожие ни на какие ранее известные гены. Для половой совместимости необходимо, чтобы один из партнеров имел ген первого типа, другой - второго.

Амебы Dictyostelium в последнее время стали популярным лабораторным объектом. Об их способности образовывать многоклеточные плодовые тела из множества индивидуальных организмов, многие из которых жертвуют жизнью ради «общего блага», рассказано в заметке Амёбы-мутанты не позволяют себя обманывать («Элементы», 06.10.2009).

Удивительные особенности диктиостелиума не исчерпываются сложным поведением при образовании плодовых тел. Половое размножение у этих амеб тоже протекает в высшей степени необычно. У диктиостелиума не два, а три «пола», или типа спаривания (mating types). Само по себе это еще не очень удивительно: подобная «многополость» известна у некоторых низших эукариот, в том числе у грибов и инфузорий. Если половые клетки не различаются по размеру и строению (см. Isogamy), то есть не делятся на крупные яйцеклетки и мелкие спермии, то число «полов» не обязано быть равным двум. Однако у диктиостелиума половое размножение обставлено дополнительными причудливыми «ритуалами», включающими сложное социальное поведение и каннибализм.

В благоприятных условиях гаплоидные одиночные амебы размножаются делением. Столкнувшись с нехваткой пищи, они могут перейти к половому размножению. Для этого должны встретиться две амебы, относящиеся к разным «полам». Каждый из трех полов (I, II и III) может скрещиваться с любым из двух других. Две гаплоидные амебы сливаются и образуют крупную диплоидную амебу - зиготу. После этого начинается самое интересное. Зигота выделяет сигнальное вещество - циклический аденозинмонофосфат (цАМФ), привлекающий гаплоидных амеб. Это же вещество используется амебами в качестве сигнала «ползите все сюда» при образовании скоплений, из которых потом формируется плодовое тело.

При образовании плодового тела 80% амеб превращаются в споры, получая шанс передать свои гены следующим поколениям, а 20% жертвуют собой: их тела идут на построение ножки плодового тела. Совсем другой расклад получается, когда амебы доверчиво подползают к зиготе. Подманив, словно сирена, множество гаплоидных амеб, зигота заглатывает их путем фагоцитоза и переваривает. При этом ее размер, естественно, увеличивается. В итоге получается гигантская клетка - макроциста, которая может быть в 500–1000 раз крупнее одиночной амебы. До того как быть съеденными, одиночные амебы, окружившие зиготу, строят вокруг будущей макроцисты прочную трехслойную стенку из целлюлозы. Таким образом, зигота использует маленьких гаплоидных амеб не только как пищу, но и как рабочую силу.

При наступлении благоприятных условий макроциста «прорастает», и из нее выходят сотни маленьких гаплоидных амеб. Все они, конечно, являются потомками зиготы, а не тех несчастных, которые были ею съедены. По-видимому, перед выходом потомства зигота сначала претерпевает мейоз , а затем множество последовательных митозов (хоть это и не доказано окончательно).

Предполагается, что механизм формирования макроцист эволюционно древнее механизма формирования плодовых тел, причем второй, возможно, произошел от первого.

Несмотря на то что многие лаборатории уже вовсю используют диктиостелиума в качестве модельного объекта для изучения социального поведения и химической коммуникации, многие аспекты жизни этого организма остаются загадочными. Например, до сих пор не было известно, от чего зависит пол амеб, какие гены определяют принадлежность амебы к одному из трех типов спаривания. Британские и японские ученые сообщили о разгадке этой тайны в последнем выпуске журнала Science .

Авторы целенаправленно искали в геноме диктиостелиума гены, имеющиеся у одних полов и отсутствующие у других. Геном пола I прочтен, что позволило изготовить ДНК-микрочип с образцами последовательностей 8500 генов из примерно 10 500, обнаруженных в геноме пола I. При помощи этого микрочипа были исследованы геномы 10 диких штаммов диктиостелиума, относящихся к полам I и II. В итоге был выявлен один-единственный ген в пятой хромосоме, который есть у всех амеб пола I и отсутствует у всех амеб пола II. Авторы назвали этот ген matA . Он кодирует короткий (длиной в 107 аминокислот) белок, непохожий ни на какие известные белки.

Чтобы убедиться в том, что обнаруженный белок действительно определяет половую принадлежность амеб первого пола, авторы удалили этот ген из их генома. В результате амебы полностью утратили способность спариваться и образовывать макроцисты с любыми амебами независимо от их пола. Когда ген вернули на место, способность спариваться с амебами второго и третьего полов восстановилась.

В геноме пола I по обе стороны от matA находятся гены, имеющиеся у всех трех полов и занимающие одинаковые позиции в хромосоме. Это обстоятельство позволило исследовать соответствующий участок пятой хромосомы у всех трех полов при помощи метода ПЦР (см. Полимеразная цепная реакция). Оказалось, что у пола II между этими общими для всех полов генами находится не один (как у пола I), а три гена, которые получили названия matB , matC и matD . Первый из них гомологичен гену matA , однако аминокислотные последовательности белков, кодируемых генами matA и matB , совпадают лишь на 60%. Ген matC не похож на другие известные гены, ген matD отдаленно напоминает одно из известных семейств генов, участвующих в слиянии гамет.

При помощи генно-инженерного эксперимента удалось показать, что гены matB , matC и matD действительно определяют половую принадлежность амеб второго пола. Авторы удалили у амеб первого пола ген matA , а затем вставили в их геном эти три гена. Получившиеся мутанты вели себя как амебы второго пола: они спаривались с полами I и III и не могли образовать макроцисты с полом II.

Аналогичным образом были выявлены гены, определяющие половую принадлежность амеб третьего пола. Таких генов оказалось два: matS и matT , причем первый из них сходен с matC , а второй - с matD. Ничего похожего на matA и matB в геноме третьего пола не обнаружилось.

Таким образом, локус типа спаривания (mating-type locus) у первого и третьего полов не содержит сходных элементов, а у второго пола он похож на комбинацию двух других.

Дальнейшие эксперименты показали, что три гена, находящиеся в локусе типа спаривания у амеб второго пола, выполняют разные функции. Один из них, matB , позволяет спариваться с третьим полом; другой, matC , - с первым. Ген matD не влияет на половую принадлежность, однако его наличие при некоторых скрещиваниях увеличивает число образовавшихся макроцист. Возможно, matD повышает вероятность слияния гаплоидных амеб и образования зигот.

Из двух генов, находящихся в локусе типа спаривания у амеб третьего пола, ключевым оказался ген matS . Именно от него зависит способность к спариванию с двумя другими полами. При спаривании с амебами второго пола решающую роль играет взаимодействие между генами matS и matB . Ген matT не участвует в определении пола; его функции остались неизвестны.

Таким образом, в системе определения пола у диктиостелиума можно проследить определенную логику. У полов I и III половая принадлежность определяется единственным геном - соответственно, matA и matS . Для совместимости необходимо, чтобы один из партнеров имел ген matA или его гомолог, а другой - ген matS или его гомолог. Амебы второго пола имеют сразу два «половых гена» matB и matC , являющиеся гомологами matA и matS . Наличие гомолога matA позволяет второму полу скрещиваться с третьим, гомолога matS - со вторым полом. Почему амебы второго пола не могут при этом скрещиваться друг с другом, пока не ясно.

Расшифровка механизма определения пола у диктиостелиума должна существенно облегчить разнообразные генетические эксперименты с этим интересным лабораторным объектом.

Предлагаю для решения две однотипные задачи - если решите одну, то, скорее всего, решите и другую.

Условия задач

Задача «Пруд и кувшинки»

Поверхность пруда постепенно закрывается вырастающими в нем кувшинками. За каждый день покрытая кувшинками площадь увеличивается вдвое. Вся поверхность пруда закрывается за 30 дней.

За сколько дней пруд зарастает кувшинками наполовину?

Задача «Амёбы в пробирке»

Один биолог открыл удивительную разновидность амеб. Каждая из них через минуту делится на две. В пробирку биолог кладет одну амебу, и через час вся пробирка оказывается заполненной амебами.

Сколько потребовалось бы времени, чтобы вся пробирка заполнилась амебами, если бы в нее положили вначале не одну амебу, а две?

Решения задач

Математически задачи решаются крайне просто. Сложность может возникнуть только от стереотипичности мышления, когда, например, хочется сказать, что пруд зарастёт кувшинками наполовину за половину времени. Что в корне не верно.

Задача «Пруд и кувшинки»

Нам известно, что численность кувшинок увеличивается в геометрическое прогрессии с коэффициентом - 2 (то есть каждый день их становится в два раза больше). Следовательно, за день до того, как пруд зарастёт полностью, кувшинками будет покрыта половина пруда.

Ответ на задачу: за 29 дней (30 – 1) пруд зарастёт кувшинками наполовину.

Задача «Амёбы в пробирке»

Задача решается аналогичным образом, но с другого конца. Уже через минуту в пробирке находятся 2 амёбы, что соответствует изменившимся условиям в задаче. А 2 амёбам, для того, чтобы заполнить всё доступное пространство пробирки требуется оставшиеся 59 минут (60 – 1).

Амеба обыкновенная – вид простейших существ из эукариот, типичный представитель рода Амебы.

Систематика . Вид амебы обыкновенной относится к царству — Животные, типу – Амебозои. Амебы объединены в класс Lobosa и отряд – Amoebida, семейство – Amoebidae, род – Amoeba.

Характерные процессы . Хотя амебы – это простые, состоящие из одной клетки существа, не имеющие никаких органов, им присущи все жизненно необходимые процессы. Они способны передвигаться, добывать пищу, размножаться, поглощать кислород, выводить продукты обмена.

Строение

Амеба обыкновенная – одноклеточное животное, форма тела неопределенная и изменяется из-за постоянного перемещения ложноножек. Размеры не превышают половины миллиметра, а снаружи ее тело окружено мембраной – плазмалемой. Внутри располагается цитоплазма со структурными элементами. Цитоплазма представляет собой неоднородную массу, где выделяют 2 части:

  • Наружная – эктоплазма;
  • внутренняя, с зернистой структурой – эндоплазма, где сосредоточены все внутриклеточные органеллы.

У амебы обыкновенной имеется крупное ядро, которое расположено примерно в центре тела животного. Оно имеет ядерный сок, хроматин и покрыто оболочкой, имеющей многочисленные поры.

Под микроскопом видно, что амеба обыкновенная образует псевдоподии, в которые переливается цитоплазма животного. В момент образования псевдоподии в нее устремляется эндоплазма, которая на периферических участках уплотняется и превращается в эктоплазму. В это время на противоположном участке тела эктоплазма частично превращается в эндоплазму. Таким образом, в основе образования псевдоподий лежит обратимое явление превращения эктоплазмы в эндоплазму и наоборот.

Дыхание

Амеба получает O 2 из воды, который диффундирует во внутреннюю полость через наружные покровы. Все тело участвует в дыхательном акте. Кислород, попавший в цитоплазму, необходим для расщепления питательных веществ на простые составляющие, которые Amoeba proteus сможет переварить, а еще для получения энергии.

Среда обитания

Обитает в пресной воде канав, небольших прудов и болот. Может жить также в аквариумах. Культуру амебы обыкновенной можно легко разводить в лабораторных условиях. Она является одной из крупных свободноживущих амеб, достигающих 50 мкм в диаметре и видимых невооруженным глазом.

Питание

Амеба обыкновенная передвигается с помощью ложноножек. Она преодолевает один сантиметр за пять минут. Передвигаясь, амебы наталкиваются на различные мелкие объекты: одноклеточные водоросли, бактерии, мелких простейших и т.д. Если объект достаточно мал, амеба обтекает его со всех сторон и он, вместе с небольшим количеством жидкости, оказывается внутри цитоплазмы простейшего.


Схема питания амебы обыкновенной

Процесс поглощения твердой пищи амебой обыкновенной называется фагоцитозом. Таким образом, в эндоплазме образуются пищеварительные вакуоли, внутрь которых из эндоплазмы поступают пищеварительные ферменты и происходит внутриклеточное пищеварение. Жидкие продукты переваривания проникают в эндоплазму, вакуоль с непереваренными остатками пищи подходит к поверхности тела и выбрасывается наружу.

Кроме пищеварительных вакуолей в теле амеб находится и так называемая сократительная, или пульсирующая, вакуоль. Это пузырек водянистой жидкости, который периодически нарастает, а достигнув определенного объема, лопается, опорожняя свое содержимое наружу.

Основная функция сократительной вакуоли - регуляция осмотического давления внутри тела простейшего. В связи с тем, что концентрация веществ в цитоплазме амебы выше, чем в пресной воде, создается разность осмотического давления внутри и вне тела простейшего. Поэтому пресная вода проникает в организм амебы, но ее количество остается в пределах физиологической нормы, поскольку пульсирующая вакуоль «откачивает» избыток воды из тела. Подтверждением этой функции вакуоли служит их наличие только у пресноводных простейших. У морских она или отсутствует, или сокращается очень редко.

Сократительная вакуоль кроме осморегуляторной функции частично выполняет и выделительную функцию, выводя вместе с водой в окружающую среду продукты обмена веществ. Однако основная функция выделения осуществляется непосредственно через наружную мембрану. Известную роль играет, вероятно, сократительная вакуоль в процессе дыхания, ибо проникающая в результате осмоса в цитоплазму вода несет растворенный кислород.

Размножение

Амебам свойственно бесполое размножение, осуществляемое путем деления надвое. Этот процесс начинается с митотического деления ядра, которое продольно удлиняется и перегородкой разъединяется на 2 самостоятельные органеллы. Они отдаляются и формируют новые ядра. Цитоплазма с оболочкой делится с помощью перетяжки. Сократительная вакуоль не разделяется, а попадает в одну из новообразованных амеб, во второй вакуоль формируется самостоятельно. Размножаются амебы достаточно быстро, за день процесс деления может происходить несколько раз.

В летний период времени амебы растут и делятся, но с приходом осенних холодов, из-за пересыхания водоемов, трудно найти питательные вещества. Поэтому амеба превращается в цисту, оказавшись в критических условиях и покрывается прочной двойной белковой оболочкой. При этом цисты легко распространяются за ветром.

Значение в природе и жизни человека

Amoeba proteus — важное составляющее экологических систем. Она регулирует численность бактериальных организмов в озерах и прудах. Очищает водную среду от чрезмерного загрязнения. Также является важным составляющим пищевых цепочек. Одноклеточные – еда для маленьких рыб и насекомых.

Ученые используют амебу как лабораторное животное, проводя на ней множество исследований. Очищает амеба не только водоемы, но поселившись в человеческом организме, она поглощает разрушенные частицы эпителиальной ткани пищеварительного тракта.

Цитоплазма полностью окружается мембраной, которая подразделяется на три слоя: наружный, средний и внутренний. Во внутреннем слое, который носит название эндоплазма, находятся необходимые элементы для самостоятельного организма:

  • рибосомы;
  • элементы аппарата Гольджи;
  • опорные и сократительные волокна;
  • пищеварительные вакуоли.

Пищеварительная система

Одноклеточное может активно размножаться только во влаге, в сухом месте обитания амебы питание и репродукция невозможны.

Дыхательная система и реакция на раздражение

Амёба протей

Деление амебы

Наиболее благоприятная среда существования отмечается в водоеме и человеческом теле . В этих условиях амеба размножается быстро, активно питается бактериями в водоемах и постепенно разрушает ткани органов постоянного хозяина, которым выступает человек.

Размножение амебы происходит бесполым путем . Бесполое размножение подразумевает собой деление на клетки и образование нового одноклеточного.

Отмечается, что одна взрослая особь может делиться несколько раз в день. Этим определяется наибольшая опасность для человека, который страдает амебиазом.

Именно поэтому при первых же симптомах заболевания, врачи настоятельно рекомендуют обратиться за помощью к специалисту, а не начинать самолечение. Неправильно подобранные препараты и вовсе могут нанести пациенту больше вреда, нежели пользы.

Вконтакте

Среди простейших организмов самой примитивной считается амёба. Бактерия имеет микроскопические размеры и является одноклеточным существом.

Амёба — простейшее одноклеточное существо

Амёба – что это такое?

Амёба (корненожка) – самый низкий разряд живых существ. Что это – бактерия или животное? Микроорганизм относится к простейшим одноклеточным животным, имеет крошечные размеры (от 0,2 до 0,5 мм), форма тела всё время меняется в зависимости от внешних условий. Одноклеточные существа, как и более сложные животные, используют для дыхания кислород, а во внешнюю среду выпускают углекислый газ.

Виды

При неблагоприятных условиях (скачки температуры, высыхание прудов, воздушные потоки) переходит в режим сна, преобразовываясь в цисту

В организм человека или животного амёбы попадают в форме цисты, которая защищена прочной двухслойной оболочкой. Заражение происходит через продукты питания (плохо вымытые фрукты и овощи), заражённую воду, грязные руки.

Строение

У амёбы нет скелета, оформленного рта, лёгких и жабр.

Её структуру составляют органеллы:

  • большое ядро;
  • цитоплазма, чётко разделённая на две зоны – эктоплазму и эндоплазму;
  • псевдоподии (ложные ножки, с помощью которых клетка передвигается);
  • пищеварительная вакуоль;
  • сократительная вакуоль (удаляет излишки воды и пищи из организма амёбы).

Как выглядит амёба и из чего она состоит, показано на фото.

Амёба имеет простое строение

Питание

Питание у корненожки происходит с помощью псевдоподий. Процесс захвата твёрдой пищи называется фагоцитозом. Захват еды входит в основные функции ложных ножек: они обхватывают съедобные частички, что помогает последним попасть в питательную вакуоль, где их обволакивает мембрана. Постепенно происходит пищеварение, излишки которого выходят из сокращающейся вакуоли в процессе движения амёбы.

Процесс захвата пищи амёбой

Размножение

Амёбы могут размножаться только бесполым путём. Достигнув зрелости, клетка начинает деление, в результате которого получается 2 дочерних организма.

Как размножаются:

  • изменение ядра (сначала вытягивается, потом удлиняется, вследствие чего перетягивается посредине);
  • деление ядра на две половины (образование двух самостоятельных ядер);
  • разделение самой амёбы на две новые клетки, у каждой из которых имеется своё ядро.

Амёбы размножаются бесполым путём

Во время появления дочернего микроорганизма происходит образование недостающих для новой клетки органоидов. За 24 часа амёба может пройти процесс бинарного деления несколько раз.

Жизненный цикл

Амёба имеет простой цикл существования. В благоприятной среде клетки развиваются, растут и делятся бесполым путём. При ухудшении условий существования амёбы «замирают», образуя тем самым цисты. Попадая в организм человека, животного, в водоёмы или влажную почву, микроорганизмы оживают, высвобождаются из защитной оболочки и начинают активно размножаться.

При ухудшении условий среды амёбы покрываются защитной оболочкой (цистой)

Симптомы амёбиаза

Признаки амёбиаза во многом зависят от типа заболевания:

  1. Кишечный амёбиаз (дизентерийной амёбный колит, амёбная дизентерия). Характерные симптомы: обильный понос с прожилками крови, слизи и гноя. По мере развития болезни нарастают и негативные проявления в виде повышения температуры тела, озноба, рвоты, потери аппетита. Во время дефекации возможны схваткообразные боли внизу живота, которые в спокойном состоянии менее выражены.
  2. Внекишечный тип заболевания – возникает как осложнение кишечного амёбиаза. Чаще всего поражает печень (абсцесс или амёбный гепатит). Симптомы: увеличение поражённого органа, болевые ощущения в правом подреберье, появление желтухи, высокая температура (до 40 градусов).

При поражении амёбами печени появляется боль в правом подреберье

Амёбиаз имеет слабовыраженное течение (лихорадка, понос, желтизна на коже) и проявляется уже на поздних стадиях заболевания в виде прорыва гнойных образований (перитонит). Это грозит поражением лёгких, головного мозга, мочеполовой системы.

Диагностика

Основу диагностики амёбиаза составляют 2 основных метода:

  • бактериологический анализ биологического материала (цист ищут в кале);
  • эндоскопическое обследование прямой кишки (выявление степени поражения слизистой кишечника).

Только после подтверждения диагноза специалист назначает необходимое лечение, учитывая все особенности и степень тяжести заболевания.

Для выявления степени поражения прямой кишки применяется эндоскопическое обследование

Лечение амёбиаза

Препараты, которые пагубно воздействуют на амёб, делятся на 2 основные группы:

  • контактные (просветные) – Клефамид, Паромомицин, Этофамид – используются при бессимптомном течении амёбиаза, а также для профилактики рецидивов;
  • тканевые – Тинидазол, Орнидазол, Метронидазол – назначают при кишечном амёбиазе, а также в лечении абсцессов в печени, лёгких, головном мозге.

Кишечное заболевание, вызванное амёбами, хорошо поддаётся терапии и практически полностью вылечивается на ранних стадиях протекания патологии.

Метронидазол помогает при кишечном амёбиазе

Профилактика

Заражение простейшими можно предотвратить, если придерживаться несложных профилактических мер:

  • использовать только кипячёную воду (кипятить не менее 10 минут);
  • перед употреблением хорошо мыть овощи, фрукты;
  • следить, чтоб мухи не садились на продукты питания (накрывать защитной плёнкой);
  • придерживаться правил личной гигиены (мыть руки после посещения туалета, перед едой, после посещения общественных мест и прогулок на улице);
  • не удобрять грядки человеческими фекалиями.
Важно регулярно проходить обследование и не игнорировать любые неприятные симптомы. Только так можно обезопасить себя от тяжёлого заболевания.

Амёбы являются простейшими животными, которые состоят из одной клетки. Среди примитивных микроорганизмов есть опасный вид – дизентерийная амёба (не путать с возбудителями малярии), которая вызывает опасное кишечное заболевание амёбиаз. Если патологию не обнаружить вовремя, она способна привести к тяжёлым осложнениям в печени, лёгких и даже головном мозге. Профилактика и своевременное обращение к специалисту дают возможность не допустить опасных последствий.