Какие материалы притягиваются к магниту. Почему магнит притягивает – все о магнитных полях

Известна железная руда - магнитный железняк. Ку­ски магнитного железняка обладают замечательным свойством притягивать к себе железные и стальные пред­меты. Это - естественные магниты. Лёгкая стрелка, сде­ланная из магнитного железняка, всегда поворачивается одним и тем же концом к северному полюсу Земли. Этот конец магнита условились считать северным полюсом, а противоположный ему - южным.

Если железный или стальной стержень привести в со­прикосновение с магнитом, стержень сам становится маг­нитом, сам будет притягивать железные опилки, стальные гвозди. Говорят, что стержень намагничивается.

Намагничиваться способны все металлы, но в разной степени. Очень сильно намагничиваются только четыре чистых металла - железо, кобальт, никель и редкий ме­талл гадолиний. Хорошо намагничиваются также сталь, чугун и некоторые сплавы, не содержащие в своём со­ставе железа, например сплав никеля и кобальта. Все эти металлы и сплавы называют ферромагнитными (от латинского слова «феррум» - железо).

Совсем слабо притягиваются к магниту алюминий, платина, хром, титан, ванадий, марганец. Намагничи­ваются они так незначительно, что без специальных при­боров обнаружить их магнитные свойства нельзя. Эти металлы получили название парамагнитных (гре­ческое слово «пара» означает около, возле).

Висмут, олово, свинец, медь, серебро, золото намагни­чиваются тоже очень слабо, но они не притягиваются маг­нитом, а наоборот, очень слабо отталкиваются от него и называются поэтому диамагнитными («диа» по - гречески значит поперёк).

Почему же одни металлы намагничиваются сильно, а другие - слабо?

Поднесём к медной проволоке, по которой течёт ток от батареи, несколько магнитных стрелок. Стрелки рас­положатся так, как показано на рисунке 13. Это значит, что на стрелки действуют магнитные силы; другими словами - вблизи проводни­ка с током возникает магнит­ное поле. Возникновение маг­нитного поля есть результат движения электрических за­рядов - электронов.

Теперь вспомним об ато­ме. Вокруг центральной ча­сти атома - ядра - дви­жутся электроны. Каждый электрон, кроме того, вра­щается и вокруг собственной оси. Каждый электрон также создаёт на своём пути маг­нитное поле.

В атомах висмута, олова и других диамагнитных ме­таллов магнитые поля отдельных электронов направлены навстречу друг другу, и действие одного поля уничто­жается действием другого. Таким образом, атомы диа­магнитного металла не имеют магнитных свойств. Но диамагнитные тела слабо отталкиваются от магнита. Почему же это происходит?

Если какое-нибудь вещество внести в поле магнита, то атомы этого вещества будут равномерно вращаться в маг­нитном поле; вращение приводит к тому, что атомы по­лучают магнитные свойства, становятся как бы малень­кими, очень слабыми магнитиками. Учёные точно рассчи­тали, что северный полюс каждого атома-магнитика ока­зывается при этом против северного полюса магнита (рис. 14). А так как одноимённые магнитные полюса от­
талкиваются, атом должен отталкиваться магнитом. Именно такой и только такой магнетизм обнаруживается у диамагнитных металлов.

Иное дело - парамагнитные и ферромаг­нитные металлы. Атомы этих металлов построены так, что отдельные магнитные поля электронов усиливают

Рис. 14. Схема намагничения разных металлов.

О> о> о»

Друг друга и каждый атом уже является ма­леньким магнитиком с двумя полюсами. В чём же разница между этими двумя группами металлов?

В парамагнитных металлах атомы-магнитики распо­ложены совершенно беспорядочно (рис. 14). В магнитном поле атомы тоже начинают вращаться (это общее для всех атомов свойство), и вращение приводит к тому же, что и у диамагнитных металлов. Но диамагнетизм здесь обнаружить не удаётся, так как у парамагнитных атомов есть гораздо более сильные «собственные» магнитные по­люса (результаты наложения друг на друга магнитных полей отдельных электронов) и эти полюса будут вести себя обычным образом: северный полюс будет стремиться к южному полюсу магнита, а южный - к северному. Если
бы атомы не совершали теплового движения, они бы­стро установились бы в полном порядке (северными по­люсами к южному полюсу магнита) и парамагнитный металл можно было бы намагнитить так же сильно, как и ферромагнитный. Но при обычных температурах этого не происходит: тепловое движение всё время расшаты­вает строй атомов, и металл намагничивается очень слабо.

Иная картина наблюдается в ферромагнитных металлах.

Учёные предполагают, что ме­жду атомами ферромагнитных тел действуют особые мощные электрические силы. Благодаря наличию этих сил атомы - магнитики в опреде­лённых участках кри­сталла выстраиваются в строгом порядке и сохраняют свое расположение (рис. 14). Поэтому в кристаллах железа, кобальта, ни­келя и гадолиния есть отдельные скопления атомов, сотни миллиардов атомов, магнитные полюса которых располо­жены одинаково. Такие самопроизвольно намагниченные скопления называются доменами. Границы их можно видеть в микроскоп, если на поверхность ненамагничен - ного металла навести очень тонкую железную пыль. Пы­линки собираются у границ доменов, у полюсов (рис. 15).

Когда железо или другой ферромагнитный металл вносится в магнитное поле, полюса отдельных скоплений постепенно смещаются, пока северные полюса доменов не станут против южного полюса магнита.

Большая заслуга в развитии наших знаний о ферро­магнитных явлениях принадлежит советским учёным Н. С. Акулову, Е. И. Кондорскому и другим.

Мы уже отмечали, что тепловое движение мешает атомам-магнитикам выстраиваться в магнитном поле даже при обычных температурах. При нагревании эти «помехи» усиливаются, и чем выше температура, тем труднее намагнитить металл. Для каждого ферромаг­нитного металла существует определённая температура, при которой он уже становится парамагнитным. Эти температуры в честь открывшего их физика Пьера Кюри названы точками Кюри. Для кобальта точка

Кюри - около 1000°, для железа - примерно 750°, а для никеля - 360°.

Ферромагнитный металл намагничивается в магнитном поле. Это не значит, что для получения магнита обяза­тельно нужен естественный магнит. Получить магнит можно и с помощью электрического тока. Если железный стержень обмотать изолированной проволокой, а затем пропускать по ней ток, стержень (сердеч­ник) намагнитится (рис. 16). Полученный таким путём магнит называют электро­магнитом. Как только ток в прово­локе прекращается, электромагнит теряет свою силу - железо почти полностью размагничивается. Это свойство электро­магнита весьма денно в тех случаях, ко­гда действие магнитной силы необходимо лишь на определённое время.

Электромагниты применяются очень широко. Электромагнит - необходимая деталь телеграфного аппарата, телефона, электрического звонка, динамомашины, электромотора, электромагнитного подъ­ёмного крана.

Если сердечник электромагнита сде­лать не из железа, а из стали, то после выключения тока магнитные свойства не исчезнут, сталь не размагнитится: строе­ние этого сплава неоднородно, и поэтому восстановление прежнего беспорядка в расположении полюсов отдельных доменов затруднено. Железо легче намагнитить, чем сталь, легче его и размагнитить. Поэтому сердечники электро­магнитов делаются именно из железа, а на изготовление постоянных магнитов идёт сталь.

Постоянные магниты необходимы для изготовления компасов, радиорепродукторов, различных измеритель­ных электроприборов и т. д. Они делаются обычно из высокоуглеродистой стали. Теперь начинают приме­няться постоянные магниты из нового сильно намагничи­вающегося сплава м а г н и к о, который состоит из ко­бальта, никеля, меди, алюминия и железа. Магнико со­здан советскими металловедами А. С. Займовским и Б. Г. Лившицем.

Какие металлы взаимодействуют с магнитами

Различные материалы по-разному реагируют в присутствии магнитов и магнитного поля. Металлы, такие как железо, никель и кобальт, сильно притягиваются к магнитам, и они известны как ферромагнитные металлы. Другие материалы могут слабо притягиваться, и есть даже металлы, которые отталкиваются от магнитов. Черные металлы не только притягиваются магнитами, но и могут намагничиваться, будучи подвергнутыми воздействию магнитного поля.



"

Ферромагнитные металлы

Ферромагнитные металлы сильно притягиваются к объектам с магнитнымм полями и могут сохранять свои магнитные свойства после удаления магнита от них. Они используются для создания постоянных магнитов. Основными ферромагнитными металлами являются железо, никель, кобальт, гадолиний и диспрозий. Если вы держите кусок ферромагнитного металла рядом с магнитом, то ощутите достаточно сильное притяжение.


"

Ферромагнитные сплавы

Ферромагнитные сплавы представляют собой материалы, такие как сталь, которая содержит ферромагнитные металлы. Сталь представляет собой комбинацию железа и нескольких других металлов и имеет большую твердость, чем железо. Из-за этой твердости сталь может сохранить свой магнетизм дольше, чем железо. При нагревании до высокой температуры сталь теряет свои магнитные свойства. Это также произойдет с ферромагнитными металлами, такими как никель.


"

Ферримагнитные материалы

Ферримагнитные материалы представляют собой ферриты, магнетит и магний. Все они имеют оксиды железа в качестве основного компонента, а также оксиды других металлов. Люди впервые обнаружили магнетизм с помощью лодстнонов. Лодстоун – магнетит, который находится естественным образом намагниченным. Магнетит притягивается к магнитным полям, но обычно сам не намагничивается. Ферримагнитные материалы похожи на ферромагнетики, но с более низким магнитным притяжением.


"

Парамагнитные металлы

Парамагнитные металлы слабо притягиваются к магниту и не сохраняют магнитных свойств при удалении от магнита. К ним относятся медь, алюминий и платина. Магнитные свойства парамагнитных металлов зависят от температуры, а алюминий, уран и платина становятся более притягивающимися для магнитных полей, когда они очень холодные. Парамагнитные вещества имеют гораздо меньшие силы притяжения для магнитов, чем ферромагнитные материалы, и для измерения магнитного притяжения необходимы высокочувствительные инструменты.



.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

В разделе на вопрос какой металл не притягивает магнит? заданный автором Марина Сивцова лучший ответ это Любые диамагнетики не притягивают магнит, а наоборот отталкивают его.
Это, например, такие диамагнитные металлы, как Cu-медь, Au-золото, Zn-цинк, Hg-ртуть, Ag-серебро, Cd-кадмий, Zr-цирконий и др.
А вот парамагнитные металлы, типа Алюминия, притягиваются к магниту. Просто, когда они находятся не в ферромагнитной фазе, то такое притяжение очень слабенькое и без приборов незаметное. Типичный пример, это алюминий. При комнатной температуре он находится не в ферромагнитной фазе, а в обычной парамагнитной фазе. Поэтому, если его просто держать руками и поднести к магниту, то притяжение не почувствуете. А вот если повесить кусок алюминия рядом с магнитом на длинной нитке, то нить чуть отклонится от вертикали.

Ответ от Next [гуру]
Медь, алюминий и сплавы на основе этих металлов


Ответ от <=Алинка=> [активный]
А еще золото и серебро)))


Ответ от National Socialist [гуру]
Все, кроме ферромагнетиков.


Ответ от Валентина Мазаник [активный]
Магнит не притягивает алюминий


Ответ от Olyvern [гуру]
проще ответить какой притягивает - только железо


Ответ от Jurijus Zaksas [гуру]
Магнит не притягивает любой немагнитный металл.


Ответ от Анатолий Крылов [гуру]
Цветные металлы


Ответ от Ёебастьян Парэйра [гуру]
Алюминий


Ответ от Глаша Новикова [гуру]
Притягивают только 4или 5 - Железо.Никель.Кобальт. Гадолиний (от +16гр) . Диспрозий (при большом минусе) , - остальные не магнитны- подходят под вопрос, выписывай кроме них из таблицы Менделеева все металлы. Осторожнее с редкоземельними -могут еще посоветовать, так это брехня. Со сплавами сложно - обратитесь к Учебнику " Металловедение"-автор Гуляев А. П.

В магнитных цепях различных электрических машин, трансформаторов, приборов и аппаратов электротехники, радиотехники и других отраслей техники встречаются разнообразные магнитные и немагнитные материалы.

Магнитные свойства материалов характеризуются величинами , и магнитной проницаемости.

Зависимость между магнитной индукцией и напряженностью магнитного поля, выраженная графически, образует кривую, называемую петлей . Пользуясь этой кривой, можно получить ряд данных, характеризующих магнитные свойства материала.

Переменное вызывает появление в магнитных материалах . Эти токи нагревают сердечники (магнитопроводы), что приводит к затрате некоторой мощности.

Для характеристики материала, работающего в переменном магнитном поле, суммарное значение мощности, затрачиваемой на гистерезис и вихревые токи при 50 Гц, относят к 1 кг веса материала. Эта величина называется удельными потерями и выражается в Вт/кг.

Магнитная индукция того или иного магнитного материала не должна превышать некоторой максимальной величины в зависимости от вида и качества данного материала. Попытки увеличить индукцию приводят к увеличению потерь энергии в данном материале и его нагреву.

Магнитные материалы классифицируются как магнитно-мягкие и магнитно-твердые.

Магнитно-мягкие материалы

Магнитно-мягкие материалы должны отвечать следующим требованиям:

  1. обладать большой относительной магнитной проницаемостью µ, позволяющей получать большую магнитную индукцию B при возможно малом числе ампер-витков;
  2. иметь возможно меньшие потери на гистерезис и вихревые токи;

Магнитно-мягкие материалы используются в качестве магнитопроводов электрических машин, сердечников трансформаторов, дросселей, реле, электроизмерительных приборов и тому подобном. Рассмотрим некоторые магнитно-мягкие материалы.

Электротехническое железо

получают путем электролиза сернистого или хлористого железа с последующей плавкой в вакууме продуктов электролиза. Измельченное в порошок электролитическое железо идет на изготовление магнитных деталей по типу изготовления керамики или пластмасс.

получается в виде порошка в результате термического разложения вещества, в состав которого входит железо, углерод и кислород .

При температуре 1200 °С порошок карбонильного железа спекается и идет на изготовление таких же деталей, которые выполняются из электролитического железа. Карбонильное железо отличается высокой чистотой и пластичностью; применяется в электровакуумной промышленности, а также в приборостроении для изготовления лабораторных инструментов и приборов.

Рассмотренные нами два вида особо чистого железа (электролитическое и карбонильное) содержат не более 0,05 % примесей.

является наиболее распространенным материалом в электромашиностроении и трансформаторостроении. Электротехническая легируется кремнием для улучшения ее магнитных свойств и уменьшения потерь на гистерезис. Кроме того, в результате введения кремния в состав стали увеличивается ее удельное сопротивление, что приводит к уменьшению потерь на вихревые токи. Толщина листа в зависимости от марки стали 0,3 и 0,5 мм. Электротехническая сталь, прокатанная в холодном состоянии с последующим отжигом в атмосфере водорода, имеет особо высокие магнитные свойства. Это объясняется тем, что кристаллы металла располагаются параллельно направлению прокатки. Такая сталь обозначается буквами ХВП (холоднокатаная высокой проницаемости, текстурированная). Листы стали имеют размеры от 1000 × 700 до 2000 × 1000 мм.

Марки электротехнической стали раньше обозначались, например, так: Э3А, Э1АБ, Э4АА. Буква Э означает - электротехническая сталь; буква А - пониженные потери мощности в переменном магнитном поле; буквы АА - особо низкие потери; буква Б - повышенная магнитная индукция; цифры 1 - 4 показывают количество содержащегося в стали кремния в процентах.

Согласно ГОСТ 802-54, введены новые обозначения марок электротехнической стали, например: Э11, Э21, Э320, Э370, Э43. Здесь буква Э обозначает - электротехническая сталь; первые цифры: 1 - слаболегированная кремнием; 2 - среднелегированная кремнием; 3 - повышенолегированная кремнием и 4 - высоколегированная кремнием. Вторые цифры в обозначении марок указывают на следующие гарантированные магнитные и электрические свойства сталей: 1, 2, 3 - удельные потери при перемагничивании сталей при частоте 50 Гц и магнитная индукция в сильных полях; 4 - удельные потери при перемагничивании сталей при частоте 400 Гц и магнитная индукция в средних полях; 5, 6 - магнитная проницаемость в слабых полях (H менее 0,01 А/см); 7, 8 - магнитная проницаемость в средних полях (H от 0,1 до 1 А/см). Третья цифра 0 указывает на то, что сталь холоднокатаная, текстурированная.

сплав железа и никеля. Примерный состав пермаллоя: 30 - 80 % никеля, 10 - 18 % железа, остальное , молибден, марганец, хром. Пермаллой хорошо обрабатывается и выпускается в виде листов. Обладает очень высокой магнитной проницаемостью в слабых магнитных полях (до 200 000 Гн/см). Пермаллой применяется для изготовления деталей телефонной и радиотехнической связи, сердечников трансформаторов, катушек индуктивности, реле, деталей электроизмерительных приборов.

сплав алюминия, кремния и железа. Примерный состав альсифера: 9,5 % кремния, 5,6 % алюминия, остальное железо. Альсифер - твердый и хрупкий сплав, поэтому он обрабатывается с трудом. Преимущества альсифера - высокая магнитная проницаемость в слабых магнитных полях (до 110 000 Гн/см), большое удельное сопротивление (ρ = 0,81 Ом × мм²/м), отсутствие в его составе дефицитных металлов. Применяется для изготовления сердечников, работающих в высокочастотных установках.

Пермендюр

сплав железа с кобальтом и ванадием (50 % кобальта, 1,8 % ванадия, остальное железо). Пермендюр выпускается в виде листов, полос и лент. Применяется для изготовления сердечников электромагнитов, динамических репродукторов, мембран, телефонов, осциллографов и тому подобного.

Магнитодиэлектрики

Это магнитно-мягкие материалы, раздробленные в мелкие зерна (порошок), которые изолируются одно от другого смолами или другими связками. В качестве порошка магнитного материала применяется электротехническое железо, карбонильное железо, пермаллой, альсифер, магнетит (минерал FeO · Fe 2 O 3). Изолирующими связками являются: шеллак, фенолоформальдегидные смолы, полистирол, жидкое стекло и другие. Порошок магнитного материала смешивают с изолирующей связкой, тщательно перемешивают и из полученной массы прессуют под давлением сердечники трансформаторов, дросселей, деталей радиоаппаратуры. Зернистое строение магнитодиэлектрических материалов обуславливает малые потери на вихревые токи при работе этих материалов в магнитных полях токов высокой частоты.

Магнитно-твердые материалы

Магнитно-твердые материалы применяются для изготовления . Эти материалы должны отвечать следующим требованиям:

  1. обладать большой остаточной индукцией;
  2. иметь большую максимальную магнитную энергию;
  3. обладать стабильностью магнитных свойств.

Самым дешевым материалом для постоянных магнитов является углеродистая сталь (0,4 - 1,7 % углерода, остальное - железо). Магниты, изготовленные из углеродистой стали, обладают невысокими магнитными свойствами и быстро теряют их под влиянием нагрева, ударов и сотрясений.

Легированные стали обладают лучшими магнитными свойствами и применяются для изготовления постоянных магнитов чаще, чем углеродистая сталь. К таким сталям относятся хромистая, вольфрамовая, кобальтовая и кобальто-молибденовая.

Для изготовления постоянных магнитов в технике разработаны сплавы на основе железа - никеля - алюминия. Эти сплавы отличаются высокой твердостью и хрупкостью, поэтому они могут обрабатываться только шлифованием. Сплавы обладают исключительно высокими магнитными свойствами и большой магнитной энергией в единице объема.

В таблице 1 приведены данные о составе некоторых магнитно-твердых материалов для изготовления постоянных магнитов.

Таблица 1

Химический состав магнитно-твердых материалов

Немагнитные материалы

В различных приборах и аппаратах, применяемых в электротехнике, необходимо иметь материал, не обладающий магнитными свойствами. Для таких целей пригодны пластмасса и цветные металлы (алюминий, ). Однако эти материалы обладают малой механической прочностью, а некоторые из них дефицитны. В связи с этим они заменяются немагнитной сталью и немагнитным чугуном.

Примерный состав немагнитной стали: 0,25 - 0,35 % углерода, 22 - 25 % никеля, 2 - 3 % хрома, остальное - железо. Немагнитная сталь применяется для стяжки и крепления трансформаторов, дросселей, катушек индуктивности и тому подобного.

Примерный состав немагнитного чугуна: 2,6 - 3 % углерода, 2,5 % кремния, 5,6 % марганца, 9 - 12 % никеля, остальное - железо.

Немагнитный чугун применяется для изготовления крышек, кожухов, втулок, масляных выключателей, кабельных муфт, кожухов сварочных трансформаторов.

Магнитные свойства меди и ее сплавов. Хром магнитится или нет

304, 316 и магнитная нержавейка

Одним из самых популярных видов металлопроката является сталь нержавеющая жаропрочная, марки которой способны сохранять свои свойства при высоких температурах, в т.ч. в агрессивных средах. Ёмкости, оборудование, выполненные из подобных сплавов, эффективно применяются для горячих жидкостей, едких кислотных растворов, при изготовлении деталей нагревательных приборов, котлов.

Для самого материала обозначения позволяют легко определять состав и назначения. Для таких сварочных расходников, как электроды по нержавейке, маркировка определяет их применение и классификацию:

  • Плавящиеся электроды из проволоки – медные, алюминиевые, стальные, чугунные и т.д.;
  • Неплавящиеся – вольфрамовые, графитовые (синтетические). Также применяется специальный уголь для электротехнического оборудования;

Нержавейка марка стали

В СНГ, США, странах Азии и ЕС марки нержавеющей стали и их характеристики немного разные. В частности, речь идёт о количестве хрома, никеля, других легирующих добавок в сплаве. В этом плане российские обозначения несколько удобнее, т.к. позволяют сразу выяснить состав. К примеру, 08Х18Н10, это 0,8% углерода, 18% хрома и 10% никеля. Ближайший зарубежный аналог получил обозначение AISI 304. Компания "Региональный дом металла" осуществляет продажу отечественного и американского формата, где в маркировке применяются не только цифры, но и буквы. Они обычно означают либо содержание углерода, либо дополнительные легирующие добавки:

  • Ti – титан;
  • Cu – медь;
  • N – азот, и другие.

Свойства каждой стали разные. К примеру, цена нержавейки зависит от того, аустенитная она или низкоуглеродистая. Она показывает великолепную стойкость к разрушительному воздействию коррозии. Имея состав, сходный с AISI 304, эта сталь надёжнее, благодаря большему содержанию никеля и дополнительному легированию молибденом. От свойств зависит сфера применения.

Марки нержавейки

Компания «Региональный дом металла» реализует стали с разными свойствами. Мы предлагаем вам приобрести наиболее популярные марки магнитной нержавеющей стали. К ним относятся ферритные сплавы, такие, как AISI 430. Лучше всего магнитятся мартенситные стали. Ферритные сплавы проявляют это свойство, в зависимости от состава. Магнитятся также AISI 409, 08х13 и многие другие.

Для сравнения, 304 марка нержавейки аустенитная, а потому не магнитится. Зато она универсальна в применении. Из неё можно сделать стол для разделки мяса, дымоход, металлическую посуду, другие изделия.

Как маркировка нержавейки может помочь определить магнитные свойства? Всё очень просто. Вам нужно посмотреть, сколько в составе сплава никеля. При 10% и более материал перестаёт магнититься.

rdmetall.ru

AISI 430 магнитится или нет

Сделать заказ можно по телефону

Наши специалисты с радостью вам помогут

7 495 775-50-79

Как отличить качественную нержавеющую арматуру или полосу от дешевой и недолговечной копии? Очень часто задаются вопросом: "aisi 430 магнитится или нет?" Дать точного ответа никто не может. Причина состоит в том, что для получения заготовок необходимо свыше 5 элементов, которые имеют разные параметры. В сочетании друг с другом продукт и вовсе изменяет свое отношение к магнитам.

Металлопродукция – товары, в основе которых лежит сплав черных или цветных металлов. В зависимости от сочетания компонентов и их доли на общую массу, меняются не только ковкость и устойчивость к физическим повреждениям, но и внешние характеристики. Зачастую изменения касаются каждого свойства, в том числе и его магнитных качеств.

Одной из наиболее заметных категорий черного металлопроката является сталь. Она изготавливается путем проката через холоднокатаный и горячекатаный станок. От вида ее производства меняется степень огнеупорности и пластичности. Если взят процесс реализации под воздействием высоких температур, то на выходе получается сырье способное выдерживать суровые климатические изменения. Для сплава реализованного под действием холода характерна повышенная гибкость и теплопроводность.

Углеродистая сталь – основа производства гладкой или рифленной нержавейки. Она универсальна, потому активно используется в самых разных сферах общества:

  • пищевая индустрия;
  • строительство;
  • тепло- и электроэнергетика;
  • химическая и нефтегазовая промышленность;
  • архитектура;
  • машиностроение и так далее.

Магнитные свойства

Стальное изделие бывает двух типов:

  • Ферритной. Заготовки данной группы примагничиваются. Дополнительными легирующими элементами является медь, титан и молибден. При сохранности своей пластичности, металлопрокат обладает высокой прочностью. Исключена межкристаллитная коррозия.
  • Аустенитной. Исключены физико-химические явления по действием магнитов. Используется для реализации изделий кухонного назначения: тары, оборудования пищевой промышленности, сковородки, раковины. Находит применение в медицинской сфере: из такого сырья реализуются иглы.

При этом наличие или отсутствие такой характерной особенности никак не влияет на функциональность материала и ее коррозийную стойкость. Оба варианта имеют высокие антикоррозионные характеристики.

Может ли AISI 430 магнитится или нет? Ответ однозначный: да, если она относится к ферритным металлическим конструкциям. Это значит, что в ее составе преобладает содержание хрома и практически отсутствует никель и марганец.

Стальные материалы: особенности и отличия

Независимо от вышеуказанной черты, покрытие данной марки может быть двух видов:

  • глянцевая;
  • матовая.

Для каждой из них разработана своя технология обработки. Что сделать поверхность блестящей, отражающее все вокруг с максимальной точностью необходима длительная полировка. Это позволило архитекторам создавать уникальные предметы интерьера и возводить современные постройки с эксклюзивным дизайном.

Для получения шероховатой фактуры требуется шлифовка металла. Специальный инструмент с грубой насадкой делает покрытие более темным, без бликов, ярко выраженного сияния. Применение такого проката требуется для штамповки деталей и конструкций, которые в большей части будут находится внутри установок и систем (в конструировании автомобиля или самолета).

Если нужна нержавеющая труба, полоса, круг или проволока, но встает вопрос о ее дополнительных параметрах, следует помнить об отсутствии реакции магнитов на долговечность металлопродукции и ее внешние показатели.

www.globus-stal.ru

Какие металлы не магнитятся? Какие металлы притягивает магнит?

Также можно посмотреть презентацию на тему Магнитные свойства вещества.

Есть и другие группы магнетизма. Поведение металла также может зависеть от условий, от модификации его кристаллической решетки и т.д.. Но в обычным условиях дело обстоит так.

Итак, можно определнно сказать, что магнитными свойствами (то есть магнитятся) обладают следующие металлы:

1) железо и все его сплавы;

2) никель;

3) гадолиний;

4) кобальт.

Об остальных металлах могу смело сказать, что они не обладают свойством магнититься.

Из того, что доступно нам в нашем быту ничего, кроме железосодержащих сплавов (продукция так называемой чрной металлургии) не магнитится. Ни алюминий, ни медь, ни серебро, ни золото к магниту не притянутся.

Если вдруг какойто сплав вроде как немагнитных металлов притягивается, то в этом сплаве есть присутствие магнитных металла. Например, бронза железистая слегка подлипает.

Как объясняли простыми словами нам в школе, вс что ржавеет притягивается магнитов, а вс что не ржавеет не притягивается.

То есть грубо говоря все цветные металлы не притягиваются (не берутся) на магнит, а все чрные металлы берутся на магнит.

Сплавы низкого качества на китайских смесителях, явно содержат в себе железо из-за использования сырья с переработки фактически с мусорок Европы!), берутся на магнит и что доказано временем ржавеют, хотя заявлены как сплавы латуни или бронзы.

Вообщем если брать грубо говоря вс что содержит или относится к чрному металлу - реагирует на магнит и только чистые цветные металлы и их сплавы не магнитятся!

  • ферромагнетики (сильно намагничиваются даже в слабых полях)
  • антиферромагнетики (не имеют магнитных свойств)
  • диамагнетики (имеют слабые магнитные свойства)
  • парамагнетики (имеют слабые магнитные свойства)
  • ферримагнетики.

Есть элементы, которые называются - ДИАМАГНЕТИКИ... данные элементы(металлы) не притягивают магнит.

К таковым относятся - медь, золото, цинк, ртуть, серебро, цинк, кадмий, цирконий.

Есть элементы, которые называются - ПАРАМАГНЕТИКИ данные элементы и их соединения притягивают манит(намагничиваются во внешнем магнитном поле). К ним принадлежат - алюминий, платина, железо, оксиды большинства металлов...

info-4all.ru

Хром, окись ZnO магнитная восприимчивость

    Другие окислы элементов переменной валентности, например окись урана, окись тория, окись титана, которые являются активными катализаторами циклизации, также обнаруживают магнитную восприимчивость при диспергировании на окиси алюминия правда, эти системы не были столь детально изучены, как система, содержащая окись хрома. Важным исключением, однако, является окись молибдена, которая совершенно не обнаруживает магнитной восприимчивости. Эта аномалия до сего времени не получила удовлетворительного объяснения возможно, что она связана с частично неполярным характером связи молибден - кислород.      Дисперсная структура катализатора окись хрома -окись цинка. Магнитная восприимчивость кат-ров различного способа приготовления. 

Селвуд на основании измерений магнитной восприимчивости пришел к выводу о том, что медно-хромовой катализатор не является ни просто хромитом меди, ни механической смесью окиои меди и хромита меди. Этот катализатор при низких температурах обладает ферромагнитными свойствами, тогда как такими свойствами не обладают ни хромит меди, ни скись меди, ни механичесюие смеси этих двух соединений. Диспергированная окись меди также не обнаруживает ферромагнитных свойств. Селвуд полагает, что термин хромит меди для этого катализатора несомненно, неправи /1ен и вводит в заблуждение, как это показали рентгенографические исследования Страупе я исследования ферромагнитных свойств, приведенные автором. Это заключение подтверждается тем фактом, что хромит меди, который остается после удаления окиси меди при действии кислоты, неактивен в качестве катализатора гидрогенизации сложных эфиров. 

Резонанс б-фазы не изменяется значительно при окислении при 500° и обусловлен относительно стабильными ионами СгЗ+. На основании данных о магнитной восприимчивости образцов с концентрацией Сг только до 1 вес. % Мацунага сделал вывод, что при бесконечном разбавлении весь хром при окислении перейдет из состояния 4-3 в состояние 4-6. Данные ЭПР показывают, что это не верно, поскольку при малых концентрациях превалирует б-фаза и она устойчива в отношении окисления. С другой стороны, р-фаза при высоких концентрациях, по-видимому, значительно устойчивее к окислению при 500°. Это указывает на то, что окись хрома более подвержена окислению, если она находится в виде маленьких островков. 

Бриджес и др. анализировали состав новерхности серии катализаторов из окисей хрома и алюминия, исследуя относительную способность этих катализаторов хемосорбировать кислород и окись углерода при низких температурах. Результаты, полученные этими исследователями, показали, что количество кислорода, хемосорбированного при - 195°, может вполне закономерно характеризовать долю поверхности смешанного окиспого катализатора, которую занимает окись хрома. В соответствии с более ранней работой Эйшенса и Селвуда , использовавших в своих исследованиях измерения магнитной восприимчивости (см. разд. 3.3.4), Бриджес и др. пришли к выводу, что при низких концентрациях окиси хрома (смешанном окисле) ионы хрома диспергированы по поверхности катализатора и имеют валентное состояние 4 + или 5- -. При этом доля общей поверхности, занятая окисью хрома (а следовательно, доля новерхности, доступная для хемосорбции кислорода при низкой температуре) постепенно увеличивается от нуля до 8% по мере увеличения весового содержания хрома в катализаторе до 2%. 

Дальнейшая проверка влияния величины поверхности носителя иллюстрируется результатами, полученными иа а-окиси алюминия в качестве носителя. Этот носитель обладал удельной поверхностью только в 5 м 1г. Можно было предвидеть, что магнитная восприимчивость хрома в этом случае будет значительно. меньшей, чем па окиси алюминия с высокоразвитой поверхностью. Это, повидимому, правильно, так как малая величина поверхности будет заставлять окись. хрома агрегироваться в массивные частицы. Так, на образце, содержащем 5,45% хрома на а-окиси алюминия, измеренная при -190° восприимчивость хрома была равна 86- 10 . Если бы в качестве носителя была применена окись алюминия с высокоразвитой поверхностью, то восприимчивость хрома была бы примерно 155-10 . Ясно, что это - большая разница, так как восприимчивость хрома в чистой кри-сталлическо полуторной окиси хрома равна 33- 10 . Восприимчивость хрома на носителе с высокоразвитой поверхностью уменьшается до значения 86-10 только при концентрациях, превышающих 30%. Таким образом, ясно, что большие изменения в величине удельной поверхно сти носителя сильно сказываются на изотерме восприимчивости, если только измерения проводятся в том интервале, в котором покрыта подавляющая часть поверхности. Магнитной восприимчивостью можно было бы воспользоваться для приблизительпого измерения величины удельной поверхности, если бы в этом встретилась необ.ходимость. 

Интересно отметить, что этот катализатор обладал большей магнитной восприимчивостью на грамм образца (49,6- 10 в), чем чистая кристаллическая окись хрома (22,8- 10") при той же температуре. Восприимчивость хрома также больше, чем найдено для образцов полученной пропиткой серии с той же концентрацией. В этом совместно осажденном образце с 35% хрома последний обладает прибливительно гой же степенью дисперсности, как и в полученном прониткой образце, содержащем 77о хрома. Столь большая разница объясняется диспергированием хрома в объеме совместно осажденного образца в отличие от диспергирования хрома иа поверхности образцов серии, полученной пропиткой. Эта точка зрения подтверждается полным отсутствием линий окиси хрома на рентгенограмме совместно осажденного образца даже при содержании хрома, достигающем 51%. Следует отметить, что объемное диспергирование не означает, что этот образец обязательно является более эффективным катализатором. 

Были получены ожидавшиеся результаты, а именно весь марганец оставался в состоянип +4 далее при наименьшей из исследованных концентраций, 1,3%. Изотерма восприимчивости представляла собой типичный пример того класса изотерм, который встречается в системе окись хрома -окись алюминия и для которого практически все изменение восприимчивости обусловлено изменением ионного окружения, а не изменением степени окисления. Магнитный момент удовлетворительно соответствовал теоретическому значению для Мп++++. 

По данным авторов работ , изолированные ионы трехвалентного хрома в искаженном октаэдре дают синглетный асимметричный сигнал с -фактором 3,4-4,0 и АЯ=1000-1500 Гс. Одновременно с этим в спектре ЭПР имеется широкая линия с -фактором 1,98, обусловленная взаимодействующими между собой ионами трехвалентного хрома (видимо, СггОз). Содержание трехвалентного хрома возрастает при увеличении общего количества хрома на носителе, тогда как число изолированных ионов трехвалентного хрома проходит через максимум , Изолированные ионы хрома находятся в виде твердого раствора СггОз в АЬОз и не окисляются кислородом. В катализаторах на основе ЗЮг такой сигнал не наблюдается. Находящаяся на поверхности окись трехвалентного хрома образует фазу, а не мономолекулярное покрытие. Это представление находится в соответствии с изменением магнитной восприимчивости восстановленных окиснохромовых катализаторов с изменением содержания в них хрома. В агрегатах СггОз трехвалентный хром находится в октаэдрической координации в в иде твердого раствора в у-окиси алюминия.,Поверхностные атомы такого хрома содержат адсорбированную воду, которая удаляется при нагревании, из-за чего координация этих атомов хрома из октаэдрической переходит в координацию квадратной пирамиды. Это находит отражение в изменении спектров ЭПР и оптических спектров окиснохромовых катализаторов. Перечисленные выше превращения обратимы. Отмечено, что при 170 °С при Действии этилена наблюдается смещение максимумов поглощения, видимо, вследствие образования поверхностных л-комплек-сов . 

Катализаторы из окиси хрома на окиси алюминия часто при готовляются методами, отличными от способа пропитки. Осажденную окись хрома приготовляли следующим образом Т-окись алюминия взбалтывали в 25%-ном растворе аммиака. К полученной смеси при быстром перемешивании добавляли из бюретки раствор нитрата хрома. После этого смесь сушили, прокаливали и восстанавливали таким же способом, как и пропитанные образцы. Всего было приготовлено четыре образца. Изотерма восприимчивости для этой серии имеет, в общем, ту же форму, что и для пропитанных образцов, за исключением того, что здесь фактически отсутствует точка /. Однако наиболее поразительное различие между магнитными свойствами осажденных и полученных пропиткой образцов заключается в том, что у первых константа Вейса вообще не обнаруживает критической точки. Здесь совершенно не наблюдается характерного для полученных пропиткой катализаторов послойного отложения хрома. В полученных пропиткой образцах каждый ион хрома, повидимому, имеет довольно однородное атомное окружение. Но в серии об-))азцов, приготовленных осаждением, размеры частиц окиси хрома, должно быть, изменяются в очень широких пределах - от совершенно изолированных ионов хрома до макрокристаллов. Эта точка зрения подтверждается рентгеновскими исследованиями. Наиболее интенсивная линия на рентгенограмме СгаОз, 

chem21.info

Магнитится ли медь - studvesna73.ru

Есть разные группы химических веществ (в том числе и металлов), которые отличаются суммарной векторной величиной магнитного момента атомов. Ядро атома состоит из нейтронов и протонов, которые имеют незначительный собственный магнитный момент, которым можно пренебречь. Основную величину магнитного момента составляют электроны, движущиеся вокруг ядра по замкнутой орбите.

Так вот этот магнитный момент определяет величину магнитной восприимчивости вещества.

Диамагнетики (из металлов это золото, цинк, медь, висмут и другие) - имеют отрицательную магнитную восприимчивость. Они не намагничиваются в магнитном поле.

Парамагнетики (алюминий, магний, платина, хром и другие) - имеют положительную, но малую магнитную восприимчивость. Стержни из таких металлов будут ориентированы вдоль силовых линий магнитного поля, только если это поле будет очень сильным.

Ферромагнетики (железо, никель, кобальт, некоторые редкоземельные металлы и множество разных сплавов) - класс веществ с самой сильной магнитной восприимчивостью. Хорошо намагничиваются во внешнем магнитном поле и притягиваются к источнику поля.

Существует всего 9 металлов, которые обладают сильными магнитными свойствами, они способны притягиваться к магнитам и сами способные становиться магнитами:

  • железо, кобальт, никель (3d-металлы),
  • гадолиний, тербий, диспрозий, гольмий, эрбий, тулий (4f-металлы).

Эти металлы относятся к классу ферромагнетиков. Их можно смешивать друг с другом и полученные сплавы будут обладать сильными магнитными свойствами тоже. Кроме того, некоторые металлы не обладающие магнитными свойствами могут давать сплавы с сильными магнитными свойствами.

Все вещества в природе имеют разные магнитные свойства, которые обусловлены наличием собственных магнитных моментов: спиновых, ядерных и орбитальных. Магнитные свойства отдельных веществ проявляются при высоких значениях напряженности магнитного поля и зависят от температуры. Всего существует пять групп веществ в зависимости от их магнитных свойств:

Впервые магнитные свойства обнаружили у железа и железных руд, отсюда и название ферромагнетики - от слова Ferum - феррум - железо.

Как объясняли простыми словами нам в школе, всё что ржавеет притягивается магнитов, а всё что не ржавеет не притягивается.

То есть грубо говоря все цветные металлы не притягиваются (не берутся) на магнит, а все чёрные металлы берутся на магнит.

Но вот только это так говорили в школе и можно считать это общим высказываниям, та как некоторые сплавы цветных металлов берутся на магнит в большей или меньше степени.

Например пищевая нержавейка марки 60 и меньше притягивается магнитом, но считается цветным сплавом и не ржавеет!

Сплавы низкого качества на китайских смесителях, явно содержат в себе железо из-за использования сырья с переработки фактически с мусорок Европы!). берутся на магнит и что доказано временем ржавеют, хотя заявлены как сплавы латуни или бронзы.

Вообщем если брать грубо говоря всё что содержит или относится к чёрному металлу - реагирует на магнит и только чистые цветные металлы и их сплавы не магнитятся!

Да и конечно ценные металлы, тоже относятся к цветным и не берутся на магнит - золото, серебро, платина и др.

Существует 3 типа металлов, которые вступают во взаимодействие с магнитными полями:

  • ферромагнетики - сильно притягиваются магнитом. К ним относятся: железо, никель, кобальт, гадолиний, диспрозий и их сплавы.
  • парамагнетики - притягиваются магнитом очень слабо: примерно в миллион раз слабее, чем ферромагнетики. Это медь, алюминий и некоторые другие.
  • диамагнетики - в присутствии сильного магнита могут незначительно ослабить внешнее магнитное поле. К этой категории можно причислить: графит углерода, золото, серебро, свинец, висмут.

Аппараты МРТ используют углерод, находящийся в клетках человека, чтобы индуцировать магнитное поле.

Есть три типа отношения веществ к магнитному полю:

  1. Феромагнетики - ориентируются по магнитному полю (притягиваются к магниту). Из металлов это железо, никель, кобальт, гадолиний и еще ряд переходных металлов с коротким временем жизни.
  2. Парамагнетики - почти как феромагнетики, но с некоторыми отличиями. Например, не намагничиваются в отсутствие поля и требует больших полей для проявления видимых эффектов, чем феромагнетики. Из металлов к ним относятся многие щелочные и редкоземельные элементы, а также алюминий, скандий, ванадий и др..
  3. Диамагнетики - грубо говоря, на магнитное поле не реагируют. Это все остальные металлы, которые не попали в предыдущие группы.

Есть и другие группы магнетизма. Поведение металла также может зависеть от условий, от модификации его кристаллической решетки и т.д. Но в обычным условиях дело обстоит так.

Существует четыре металла, которые магнитятся.

Это железо, кобальт, никель и гадолиний.

Все остальные металлы не магнитятся.

Кроме самогО железа, магнитятся также и его сплавы, в частности, сталь.

более года назад

Металлы могут магнитится очень хорошо, слабо и вообще не магнититься. В соответствии с этим их делят на ферромагнетики, парамагнетики и диамагнетики. Ферромагнетики заметно притягиваются магнитом и для нас важно знать, что к этим металлам относится железо и его соседи по таблице Менделеева - Кобальт и Никель. Также хорошо магнитятся редкоземельные металлы ряда Гадолиния.

К парамагнетикам относятся металлы, которые магнитятся еле заметно, это алюминий, платина, магний, вольфрам. Металлы, способность которых притягиваться почти не заметна и не определяется на глаз.

Есть еще диамагнетики, которые вообще отталкиваются магнитами. Это очень перспективное направление развития техники. К ним относятся золото, серебро и висмут, а также различные газы. Но самое интересное, что диамагнетиком является человеческое тело, что дает возможность подумать над осуществимостью левитации.

Металлы, которые не притягивают магнит, называются ДИАМАГНЕТИКИ, некоторые даже отталкивают магнит. Это золото, цинк, ртуть, серебро, кадмий, цирконий и другие.

Притягивающие магнит металлы называют ПАРАМАГНИТНЫМИ. Они не очень сильно притягивают магнит, в отличие от ферромагнетиков (слабомагнитные металлы). К ним относят медь, алюминий, платину, магний.

Существуют также ФЕРРОМАГНЕТИКИ, к которым магнит тянется очень сильно. К ним относятся всем известное железо, а также кобальт, никель, гадолиний и диспрозий. Если они присутствуют в сплавах, то предмет будет притягиваться к магниту.

Экология познания. Наука и техника:Многие даже вполне взрослые люди не понимают связь между магнетизмом и электричеством. Между тем эта связь лежит в основе практически всей современной электротехники - от генераторов до электродвигателей. А показать ее проще всего с помощью обычного магнита и куска медной трубы.

Медь не магнитится

Магнитные свойства

Медь в таблице Менделеева

Для эксперимента понадобится всего две вещи - это неодимовый магнит (лучше всего цилиндрический) и обычная металлическая труба из немагнитного материала, например меди. Внутренний диаметр трубы должен быть чуть больше (скажем, в полтора-два раза), чем внешний диаметр магнита. Ну а теперь попробуйте просто уронить магнит на пол - на первый раз вне трубы.

Если вы ростом не с дядю Степу, то примерно через полсекунды услышите характерный стук магнита об пол (а если все-таки вы дяде Степе ровня, то понадобится на 0,1 с больше). А теперь поднимите магнит с пола и бросьте его внутрь ориентированной вертикально трубы. И пока вы ждете появления магнита из нижнего среза совершенно немагнитной (но обязательно проводящей!) трубы, попробуем объяснить, почему для этого нужно столько времени.

Кстати, можете заглянуть в трубу через верхний торец - не застрял ли там магнит? Нет, не застрял - просто он падает очень медленно. Причиной тому неразрывная связь магнетизма и электричества. Движение магнита порождает изменение магнитного поля, которое, в свою очередь, наводит в трубе циркулирующие круговые токи.

А эти токи порождают магнитные поля, которые взаимодействуют с полем магнита, замедляя его падение. Ну вот, теперь вы знаете причину и можете продемонстрировать своим друзьям эффектный фокус. Точнее, сможете это сделать, когда магнит наконец пролетит трубу до конца.

Какими способами можно определить какой металл?

Железо - без цвета, магнититься и ржавеет.Алюминий - белёсого цвета, не магнититься, окисляется белым налётом.Медь - красноватого оттенка, при окислении темнеет и покрывается зелёным налётом. Не магнититься. При горении пламя зеленоватое.Бронза - желтоватого цвета, почти не окисляется, не могнититься.Нержавейка - без цвета (или сероватая), не магнититься или может.Магний - серебристо-белого оттенка, не магнититься, на запах немного сладковатый, при горении пламя ярко-белого цвета (горюч). Титан - сероватый оттенок, не магнититься..

Можно как-то определять по цвету пламени при сжигании. Но какой цвет кому принадлежит?Стали как-то определяют на наждаке по форме и цвету искр..Как определить, что перед нами сплав а не чистый (относительно) материал?

Чистые металлы не применяются в машиностроении, разве нет? Если только серебро, золото или палладий в покрытии контактов, а все конструкционные материалы - сплавы. Даже медь в проводниках.

Кипящие стали можно определить по искрам на круге - редкие длинные, оранжевые линии. Высокоуглеродистые дадут богатый пучок светлых искр со *звёздочками* на конце. Чем больше в стали углерода, тем цвет искр светлее, а *звёздочек* больше. Инструментальные стали дадут короткие, ломаные пучки искр со *звёздочками*.

Сталь по искре: https://docs.google.com/file/d/0B3mpgCG9dbNFdTVWTl9GM0JFcFk/edit?usp=sharing.От себя добавлю:- чугун даёт красную искру- если гранью титанового образца вскользь ударить по стали, будет характерная белая и яркая искра. Подобные искры даёт нержа, но с меньшей яркостью, и искру труднее высечь.

studvesna73.ru

Медь магнитится или нет и в чем причины?

Иногда случается так, что необходимо определить, из какого металла или сплава состоит монета. Первое, что приходит в голову - это обратить внимание на ее цвет. Но потом оказывается, что, например, желтая монета может быть сделана как из меди, латуни, никелево-медного сплава, так и из другого материала. Как же тогда быть? Распространенным методом проверки является использование магнита. Но для этого необходимо знать, медь магнитится или нет.

Медь не магнитится

Магнитные свойства

Каждый атом имеет величину, называемую суммарным магнитным моментом, которая определяется движением электронов по их орбите. Магнитный момент определяет величину восприимчивости вещества к магнитному полю. Все металлы делятся на три группы:

  1. Диамагнетики - вещества с отрицательной магнитной восприимчивостью, т. е. не магнитятся. Сюда относятся: цинк, золото, медь и другие.
  2. Парамагнетики - имеют положительное значение магнитной восприимчивости, но невысокое. Это магний, платина, хром, алюминий и другие. Магнитятся, но слабо.
  3. Ферромагнетики - это вещества, которые обладают сильной восприимчивостью к магнитному полю. Сюда относятся: никель, кобальт, железо, некоторые редкоземельные металлы, сплавы железа и другие.

Медь в таблице Менделеева

Сплавы и их магнитные свойства

Медь не магнитится. Если все-таки встречается монета, которая похожа на медь, но магнитными свойствами обладает, то скорее всего, это сплав. В таком сплаве меди будет не более 50%. Это может быть сделано специально, но бывали случаи, когда магнитные свойства проявляла медь, которая не была очищена от примесей в процессе изготовления монеты.

Любому человеку необходимы хотя бы минимальные знания о магнитных свойствах металлов. В большинстве случаев для определения меди этого достаточно - медное изделие к магниту не прилипнет.