Полиэтиленовые трубы: маркировка, диаметры, характеристики, применение. Полиэтилен (ПЭ): физико-химические и потребительские свойства, структура потребления, области применения полиэтилена Материал полиэтилен

Полиэтиленовые трубы, как и любые другие, имеют систему маркировки. Начинающим строителям может быть сложно понять, что собой представляет труба полиэтиленовая SDR 11 или что зашифровано в маркировке «ПЭ 80 SDR 21».

Наша статья пояснит значение нужных параметров, кроме того, в ней представлена краткая технологическая характеристика и главные области применения наиболее популярных видов полиэтиленовых труб.

Что такое SDR и ПЭ?

SDR представляет собой отношение наружного диаметра полиэтиленовой (или любой другой) трубы к толщине ее стенки. Таким образом, с увеличением показателя SDR истончается стенка трубы, и наоборот, толщина стенки растет с уменьшение показателя.

После приставки ПЭ («полиэтилен») производители указывают марку полиэтилена. В наше время чаще всего встречаются ПЭ-80 и ПЭ-100.

Материалы имеют некоторые различия:

  1. ПЭ 100 имеет более упорядоченную структуру кристаллической решетки, за счет которой после сварки можно получить более прочный и равномерный сварной шов.
  2. Однако из-за первого различия для спайки полиэтилена ПЭ 80 нужна меньшая температура.
  3. Материал марки ПЭ 100 в целом является более плотным и прочным, а значит, может использоваться в более жестких условиях эксплуатации.
  4. На производство труб необходимого диаметра потребуется большее количество полиэтилена ПЭ 80 (по сравнению с аналогом), что повышает стоимость конечного продукта, а также цену доставки его на строительный объект

В статье « » можно ознакомится с данными показателями более подробно.

Совет от профессионала: Может сложиться мнение, что раз полиэтилен 100-той марки более надежен, стоек и дешев, лучше применять только его. Однако на практике каждый вид труб нашел свое оптимальное применение. Рассмотрим их более подробно.

Характеристика изделий из ПЭ 80

ПЭ 80 SDR 21

Это трубы низкого давления, которые предназначены для использования при монтаже безнапорной, а также слабонапорной канализации, создаваемой в небольших многоквартирных домах. Возможно создание напорного водоснабжения небольших территорий открытой местности. Этот тип труб полностью сертифицирован для использования трубопроводов, обеспечивающих холодное водоснабжение и функционирование канализации. Специалисты не рекомендуют применение таких труб в таких случаях:

  • монтаж газопроводов из-за недостаточно большой толщины стенки трубы,
  • укладка магистральных трубопроводов, так как чрезмерное сдавливание может привести к физическому разрушению трубы.

ПЭ 80 SDR 17

Труба полиэтиленовая SDR 17 отличается средним значением соотношения наружного диаметра выпускаемых на сегодняшний день труб к толщине их стенки. Трубы ПЭ 80 SDR 17 рекомендованы к применению в очень широком диапазоне. Их используют:

  • для систем водопровода, предназначенных для подачи питьевой воды;
  • для водопроводов хозяйственного назначения от сооружений, где производится водоочистка, до потребителя;
  • для монтажа оросительных систем.

Выбор этих труб для монтажа коммуникаций малоэтажного дома считается оптимальным, так как при их монтаже будет обеспечена высокая прочность, легкость трубопроводов, а затраты на приобретение материала будут сравнительно невысокими.

ПЭ 80 SDR 13,6

Трубы ПЭ 80 SDR 13,6 являются трубами низкого давления и рекомендованы к использованию при монтаже трубопроводов, транспортирующих холодную питьевую воду.

Высокие технические качества и потребительские характеристики этого вида труб обусловлены применением усовершенствованной марки полиэтилена (ПЭ80) и использования нового метода в процессе очистки сырья.

Совет от профессионала: В связи с длительным сроком гарантии (до 70 лет) такие трубы широко применяют при создании долгосрочных водопроводных систем.

Характеристика изделий из ПЭ 100

ПЭ 100 SDR 26

Это трубы для транспортировки хозяйственной и питьевой воды в городских условиях и за городом. Для их производства используется полиэтилен ПЭ100, отличительными качествами которого являются высокая плотность, благодаря чему трубы из этого материала превосходят изделия из ПЭ80 по долгосрочной прочности и устойчивости к растрескиванию.

Кроме того, качественные показатели материала позволили значительно снизить толщину стенок изделия, что облегчило его вес. Трубы ПЭ100 рекомендуются к широкому применению в таких случаях:

  • для монтажа водопроводов;
  • для трубопроводов, предназначенных для транспортировки жидких пищевых продуктов, например, при производстве молока, соков, при пивоварении и виноделии.

ПЭ 100 SDR 21

Трубы ПЭ 100 SDR 21 применяют для строительства водопроводов. Проходя по трубам этого вида, вода сохраняет свои вкусовые качества и характеризуется отсутствием посторонних запахов.

Этот вид труб может быть успешно использован при необходимости совместного применения с трубами из стали, так как специальные разъемные и неразъемные переходники, которыми оснащают концы каждой трубы такого вида (с одного конца – пластик, с другого – металл), обеспечивают возможность соединения как с пластиковыми, так и со стальными трубами. Процессы коррозии, другие виды разрушения и засоры таким трубам не страшны.

ПЭ 100 SDR 17

Изделия с пометкой ПЭ 100 SDR 17 являются трубами нового поколения благодаря применению прогрессивных технологий, используемых при производстве полиэтилена ПЭ100. Особенностью этих изделий являются уникально высокие показатели прочности, что оказывает значительное влияние на усиление эксплуатационных характеристик труб из полиэтилена.

Трубы этого вида рекомендованы к использованию в системах напорного водоснабжения и газопроводах. При этом такие трубы считаются идеальными для монтажа трубопроводов, имеющих большое поперечное сечение. При изготовлении труб этого вида оказывается весьма существенной экономия материала в связи с возможностью уменьшения толщины стенки при сохранении высокой прочности изделия. Технические характеристики таких труб позволяют их широкое использование при строительстве трубопроводов, отличающихся большой протяженностью.

ПЭ 100 SDR 11

Труба полиэтиленовая SDR 11 изготавливается из полиэтилена, получаемого при низком давлении. При этом высокая плотность материала труб ПЭ 100 SDR 11 позволяет использовать их для водопроводов с высоким давлением. Применяемый для изготовления труб материал обеспечивает высокое качество и экологическую безопасность питьевой воды.

Трубы этого вида подходят для эксплуатации систем с расширенными возможностями водообеспечения. Возможно использование таких труб для монтажа канализационных коллекторов – химическая стойкость использованного при производстве материала обеспечивает высокую прочность и долговечность труб. Укладка таких труб возможна при любом виде грунта.

Такова характеристика наиболее применяемых видов изделий полиэтилена для трубопроводов. Стоит отметить, что на качество готовой продукции в значительной мере влияет марка полиэтиленовых труб, и этот фактор нужно обязательно учитывать при покупке.

Основные физико-химические свойства

Полиэтилен (ПЭ) [–CH2–CH2–]n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH2=CH2. В одной из форм мономеры связаны в линейные цепи с СП обычно 5000 и более; в другой – разветвления из 4–6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150° С) и давлениях (до 20 атм).

Молекула полиэтилена представляет из себя не что иное, как длинную цепь из атомов углерода, к каждому из которых присоединено по два атома водорода. В зависимости от метода изготовления получаются макромалекулы с различной степенью разветвления и различной плотностью. Поэтому ПЭ подразделяется на две основные группы:

1. Полиэтилен низкой плотности

Полиэтилен низкой плотности (LDPE) – ПЭ с сравнительно сильно разветвленной макромолекулой и низкой плотностью (0,916–0,935 г/см³). Процесс его изготовления протекает при очень высоком давлении от 100 до 300 мПа и температуре 100–300 °С, поэтому обозначается так же, как полиэтилен высокого давления (ПЭВД).

2. Полиэтилен высокой плотности

Полиэтилен высокой плотности (НDPE) – ПЭ с линейной макромолекулой и относительно высокой плотностью (0,960 г/см³). Это полиэтилен, называемый также полиэтиленом низкого давления (ПЭНД), его получают полимеризацией со специальными катализаторными системами.

Линейные полиэтилены образуют области кристалличности, которые сильно влияют на физические свойства образцов. Этот тип полиэтилена обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.

Таблица. Свойства полиэтилена высокой плотности

Линейное строение, о котором упоминалось ранее, характерно для ПЭ, получаемых при низком давлении, боковые цепи образуются, но они коротки и количество их невелико. Сополимеры этилена, например с бутеном-1, также получают при низком давлении для того, чтобы ввести контролируемое число ответвлений в линейную, в сущности, молекулу. Плотность сополимеров составляет 0,945-0,950 г/см3, в то время как линейных гомополимеров - 0,960 г/см3.

Пленки на основе ПЭВП более жесткие, прочные, менее воскообразные на ощупь по сравнению с пленками на основе ПЭНП. Они могут быть получены методом экструзии с раздувом или через плоскую щель (с поливом на охлаждаемый валок или водяным охлаждением). При экструзии с раздувом, однако, получают более мутную, полупрозрачную пленку.

Температура размягчения ПЭВП (121 °С) выше, чем у ПЭНП, поэтому он выдерживает стерилизацию паром. Морозостойкость примерно такая же, как у ПЭНП.

Прочность при растяжении и сжатии выше, чем у ПЭНП, а сопротивление удару и раздиру ниже. Из-за линейной структуры молекулы ПЭВП стремятся ориентироваться в направлении те чения, и сопротивление раздиру в продольном направлении пленок значительно ниже. Различия сопротивлений раздиру в продольном и поперечном направлениях могут быть увеличены при ориентации, и пленке будут присущи свойства ленточек, работающих на раздир.

Проницаемость ПЭВП ниже, чем у ПЭНП, примерно в 5-6 раз, и он является прекрасной преградой влаге.

Среди обычных пленок ПЭВП по влагопроницаемости уступает только пленкам на основе сополимеров винилхлорида и винил-иденхлорида.

По химической стойкости ПЭВП также превосходит ПЭНП, особенно по стойкости к маслам и жирам.

С увеличением плотности растворимость в органических растворителях уменьшается, как и проницаемость по отношению к растворителям.

ПЭВП подвержен растрескиванию под действием среды, как и ПЭНП, но этот эффект может быть уменьшен благодаря использованию высокомолекулярных марок ПЭ, у которых этот недостаток отсутствует.

СВОЙСТВА ПНД ТРУБНЫХ КОМПОЗИЦИЙ

  • Плотность = 0,948-0,964 кГ/см3 (по ГОСТ 15199-69).
  • Предел текучести при растяжении = не менее 21,6 МПа (по ГОСТ 11262-80).
  • Относительное удлинение при разрыве = не менее 700% (по ГОСТ 11262-80).
  • Модуль упругости при изгибе = 680-750 МПа (по ГОСТ 9550-81).
  • Температура плавления = 125-132°С (поляризационный микроскоп).
  • Температура размягчения = 120-125°С (по Вика).
  • Термический коэффициент линейного расширения = (1,7-2,0) 0,0001-41/°С (по ГОСТ 15173-70).
  • Коэффициент теплопроводности = 0,41-0,44 Вт/м °С.
  • Электрическая прочность (толщина образца 1 мм при частоте 50 Гц) = не менее 40 кВ/мм (по ГОСТ 6433.3-7).

Удельное объемное электрическое сопротивление = 1 1016-1 1017 Ом см (ГОСТ 6433.2-71).

Области применения

Существенные свойства всех типов полиэтилена (HDPE, LDPE, LLDPE):
- малая плотность (легче воды);
- очень хорошая химическая стойкость;
- очень незначительное водопоглощение;
- непроницаемость для водяного пара;
- высокая вязкость, гибкость, растяжимость и эластичность в интервале температур от –70 до +100 °С;
- хорошая прозрачность;
- легкая перерабатываемость всеми пригодными для термопластов методами;
- очень хорошая свариваемость.

Области применения полиэтилена высокой плотности , как правило, совпадают с областями, потребляющими материал малой плотности, но измененные свойства первых, несомненно, улучшают качество вырабатываемых продуктов. Так, пленка из полиэтилена высокой плотности будет прочнее и прозрачнее, формованные детали могут иметь меньшее сечение, а трубы и волокна будут обладать большей прочностью. Повышение температуры плавления новых полиэтиленов позволяет проводить стерилизацию водяным паром. Эти факторы в сочетании с возможностью регулировать свойства продуктов будут способствовать росту применения полиэтиленов, вырабатываемых на поверхностных катализаторах. Следует отметить, что в ряде случаев применение полиэтиленов высокой плотности может лимитироваться растрескиванием при длительном приложении нагрузки.

А вот относительно высокая проницаемость полиэтилена для кислорода, двуокиси углерода, ароматических веществ, а также проблемы при контакте с определенными средами (например, растворами смачивающих веществ), феномен так называемого образования трещин вследствие внутренних напряжений, в особенности у HDPE, сужают область его применения. Различные свойства HDPE по сравнению с LDPE обусловлены его высокой плотностью. При одинаковой толщине изделия из HDPE жестче и их поверхность тверже. Температура плавления на 20 °С выше, и вследствие более плотной структуры молекулы непроницаемость для водяного пара, кислорода, углекислого газа и ароматических веществ, а также химическая стойкость лучше, чем у LDPE. Высокая температура плавления дает возможность изготовления упаковок с более высокой теплостойкостью (кратковременно до 100 °С).

Удачное и редкое сочетание в полиэтилене химической стойкости, механической прочности, морозостойкости, хороших диэлектрических свойств, стойкости к радиоактивным излучениям, чрезвычайно низкие газопроницаемость и влагопоглощение, легкость и безвредность делают полиэтилен незаменимым в целом ряде областей применения.

ПЭНД перерабатывается практически всеми базовыми способами, используемыми при работе с термопластами – экструзия, выдув, литье под давлением, ротоформование.

Таблица. Области применения ПЭНД

Экструзия

Фасовочный пакет, пакет "майка", пакет с вырубной ручкой, барьерный слой многослойных упаковочных материалов (ламинаты и коэкструзионные пленки), воздушно-пузырьковая пленка, мусорные пакеты

Газоснабжение, холодное водоснабжение, защита электросетей, дренаж, внешняя канализация, внутренняя канализация, обсадные трубы для скважин

Кабельная изоляция

Изоляция кабелей высокого напряжения

Листы, мембраны, мягкие ленты

Листы: гидроизоляция, формование деталей изделий для машиностроения. Мембраны: гидроизоляционные работы. Ленты : конвейерные ленты, геоячейки

Бытовые, сельскохозяйственные, сетки для армирования дорожных покрытий, сетки для проведения строительных работ, сетки для ограждения зданий и сооружений

Выдув

Фасовочный пакет, пакет "майка", пакет с вырубной ручкой, мусорные пакеты

Флаконы для косметики, парфюмерии, бытовой химии, канистры, бочки, баки, цистерны

Литье под давлением

Товары народного потребления

Изделия для цветоводства, изделия для ванной комнаты, изделия для кухни, предметы домашнего обихода, детские товары, садово-огородный инвентарь

Двухсоставные и односоставные крышки для ПЭТ бутылок, укупорочные изделия для парфюмерии, косметики, бытовой химии, автохими

Тарные ящики

Мебельная фурнитура

Лицевая, декоративная, крепежная, опорные элементы, прочие комплектующие

Автокомплектующие

Около 400 наименований изделий для автомобиля

Другая продукция

Не будучи приоритетным видом сырья ПЭНД используется при произодстве другой литьевой продукции: мебели, тарных ведер, детских игрушек, фитингов

Ротоформование

Баки, мусорные баки, бочки,

Мобильные туалеты

Передвижные туалеты

Детские площадки

Детские игровые комплексы (горки, горки-тоннель, городки)

Дорожные огрждения

Дорожные блоки, конусы, буферы

Колодцы, септики, мусоросборы

Эстакады

Эстакады для мойки колес, установки оборотного вод

Вспенивание

Пенополиэтилен

P.S. Основные группы марок полиэтилена и сополимеров этилена, выпускаемые на сегодняшний день:

Полиэтилен
HDPE - Полиэтилен высокой плотности (полиэтилен низкого давления)
LDPE - Полиэтилен низкой плотности (полиэтилен высокого давления)
LLDPE - Линейный полиэтилен низкой плотности
mLLDPE, MPE - Металлоценовый линейный полиэтилен низкой плотности
MDPE - Полиэтилен средней плотности
HMWPE, VHMWPE - Высокомолекулярный полиэтилен
UHMWPE - Сверхвысокомолекулярный полиэтилен
EPE - Вспенивающийся полиэтилен
PEC - Хлорированный полиэтилен

Cополимеры этилена
EAA - Сополимер этилена и акриловой кислоты
EBA, E/BA, EBAC - Сополимер этилена и бутилакрилата
EEA - Сополимер этилена и этилакрилата
EMA - Сополимер этилена и метилакрилата
EMAA - Сополимер этилена и метакриловой кислоты, Сополимер этилена и метилметилакрилата
EMMA - Сополимер этилена и метил метакриловой кислоты
EVA, E/VA, E/VAC, EVAC - Сополимер этилена и винилацетата
EVOH, EVAL, E/VAL - Сополимер этилена и винилового спирта
POP, POE - Полиолефиновые пластомеры
Ethylene terpolymer - Тройные сополимеры этилена

Подробности Создано: 02.02.2018 17:17

История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.

Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот в легкой промышленности. Аналогичная история случилась и с .

История открытия

Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство.

Особенности

Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случаях материал производится в порошковом виде.

Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.

Свойства

Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь. Материал разлагается при контакте с азотной кислотой, фтором и хлором. В процессе старения полиэтилена происходит образование поперечных связей между молекулярными цепями, из-за чего он становится хрупким.

Производство линейного полиэтилена

Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки 120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.

Производство полиэтилена низкого давления

ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ - это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.

Производство полиэтилена высокого давления

Такая разновидность может быть получена при температурном режиме в диапазоне от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.

В истории науки некоторые открытия происходили случайно, а востребованные сегодня материалы часто являлись побочным продуктом какого-либо опыта. Совершенно случайно были открыты анилиновые красители для ткани, давшие впоследствии экономический и технический прорыв в легкой промышленности. Похожая история произошла и с полиэтиленом.

Открытие материала

Первый случай получения полиэтилена произошел в 1898 году. В ходе разогревания диамезотана химик немецкого происхождения Ганс фон Пехман обнаружил не дне пробирки странный осадок. Материал был достаточно плотным и напоминал воск, коллеги ученого назвали его полиметиллином. Дальше случайности у этой группы ученых дело не пошло, результат был почти забыт, интереса ни у кого не возникло. Но все же идея повисла в воздухе, требуя прагматичного подхода. Так и случилось, через тридцать с лишком лет полиэтилен был вновь открыт как случайный продукт неудачного эксперимента.

Англичане подхватывают и выигрывают

Современный материал полиэтилен появился на свет в лаборатории английской компании Imperial Chemical Industries. Э. Фоссет и Р. Джибсон проводили эксперименты с участием газов высокого и низкого давления и заметили, что один из узлов техники, в которой проводились опыты, покрылся неизвестным восковидным веществом. Заинтересовавшись побочным эффектом, они совершили несколько попыток получить вещество, но безуспешно.

Синтезировать полимер удалось М. Перрину, сотруднику той же компании, через два года. Именно он создал технологию, послужившую основой для промышленного производства полиэтилена. В дальнейшем свойства и качества материала изменялись лишь с помощью применения различных катализаторов. Массовое производство полиэтилена началось в 1938 году, а запатентован он был в 1936 году.

Сырье

Полиэтилен - это твердый полимер белого цвета. Относится к классу органических соединений. Из чего делают полиэтилен? Сырьем для его получения является газ этилен. Газ полимеризуют при высоком и низком давлении, на выходе получают гранулы сырья для дальнейшего использования. Для некоторых технологических процессов полиэтилен производится в виде порошка.

Основные виды

На сегодняшний день полимер выпускается двух основных марок ПВД и ПНП. Материал, изготовленный при среднем давлении относительного новое изобретение, но в перспективе количество выпускаемого продукта будет неизменно расти в связи с улучшающимися характеристиками и широким полем для применения.

Для коммерческого использования производят следующие виды материала (классы):

  • Низкой плотности или другое название - высокого давления (ПЭВД, ПВД).
  • Высокой плотности, или низкого давления (ПЭНП, ПНП).
  • Линейный полиэтилен, или полиэтилен среднего давления.

Также существуют другие виды полиэтилена, каждый из которых имеет свои свойства и сферу применения. В гранулированный полимер в процессе производства добавляются различные красители, позволяющие получить черный полиэтилен, красный или любого другого цвета.

ПВД

Производством полиэтилена занимается химическая промышленность. Газ этилен - основной элемент (из чего делают полиэтилен), но не единственный, требующийся для получения материала.

  • Температура нагревания составляет до 120 °С.
  • Режим давления до 4 МПа.
  • Стимулятор процесса - катализатор (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

Процесс сопровождается выпадением полиэтилена в виде хлопьев, которые потом проходят процесс отделения от раствора с последующей грануляцией.

Этот вид полиэтилена характеризуется более высокой плотностью, устойчивостью к нагреванию и разрыву. Сферой применения являются различные виды упаковочных пленок, в том числе для фасовки горячих материалов/продуктов. Из гранулированного сырья этого типа полимера изготавливают детали для крупногабаритных машин методом литья, изоляционные материалы, трубы повышенной прочности, товары народного потребления и пр.

Полиэтилен низкого давления

Производство ПНП имеет три способа. Большинство предприятий использует метод «суспензионной полимеризации». Процесс получения ПНП происходит с участием суспензии и постоянном перемешивании исходного сырья, для запуска процесса требуется катализатор.

Вторым по распространенности способом производства является полимеризация в растворе под воздействием температуры и участии катализатора. Метод не слишком эффективен, поскольку в процессе полимеризации катализатор вступает в реакцию, и конечный полимер теряет часть своих качеств.

Последним из способов производства ПНП является газофазная полимеризация, она почти ушла в прошлое, но иногда встречается на отдельных предприятиях. Процесс происходит с помощью смешивания газовых фаз сырья под воздействием диффузии. Конечный полимер получается с неоднородной структурой и плотностью, что сказывается на качестве готового продукта.

Производство происходит при следующем режиме:

  • Температура поддерживается на уровне от 120°C до 150°C.
  • Давление не должно превышать 2 МПа.
  • Катализаторы процесса полимеризации (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

Материал такого способа изготовления характеризуется жесткостью, высокой плотностью, малой эластичностью. Поэтому сферой его применения является промышленность. Технический полиэтилен применяется для изготовления крупногабаритных емкостей с повышенными характеристикам прочности. Востребован в строительной сфере, химической промышленности, для производства ТНП он почти не применяется.

Свойства

Полиэтилен устойчив к воздействию воды, ко многим видам растворителей, кислотам не вступает в реакцию с солями. При горении выделяется запах парафина, наблюдается свечение голубого оттенка, огонь слабый. Разложение происходит при воздействии азотной кислоты, хлора и фтора в газообразном или жидком состоянии. При старении, которое происходит на воздухе, в материале образуются поперечные связи между цепями молекул, что делает материал хрупким, крошащимся.

Потребительские качества

Полиэтилен - уникальный материал, привычный в быту и производстве. Вряд ли рядовой потребитель, сможет определить с каким количеством предметов из него он сталкивается ежедневно. В мировом выпуске полимеров полиэтилен занимает львиную долю рынка - 31% от общего валового продукта.

В зависимости от того, из чего сделан полиэтилен и технологии производства, определяются его качества. Этот материал соединяет порой противоположные показатели: гибкость и прочность, пластичность и твердость, сильное растяжение и устойчивость к разрыву, устойчивость к агрессивным средам и биологическим агентам. В быту мы используем пакеты различной плотности, одноразовую посуду, полиэтиленовые крышки, детали бытовых приборов и многое другое.

Области применения

Применение изделий из полиэтилена не имеет ограничений, любая отрасль промышленности или человеческой деятельности сопровождается этим материалом:

  • Наибольшее распространение полимер получил в изготовлении упаковочных материалов. На эту часть применения приходится около 35% всего производимого сырья. Такое использование оправдано грязеооталкивающими свойствами, отсутствием среды для возникновения грибкового поражения и жизнедеятельности микроорганизмов. Одна из удачных находок - рукав полиэтиленовый, имеющий широкое применение. Варьируя по собственному усмотрению длину, пользователь ограничен лишь шириной упаковки.
  • Помня, из чего сделан полиэтилен, становится понятным, почему он получил распространение как один из лучших изоляционных материалов. Одним из его востребованных в этой сфере качеств стало отсутствие электропроводимости. Также незаменимы его свойства водоотталкивания, что нашло применение в производстве гидроизоляционных материалов.
  • Устойчивость к разрушительной силе воды, как растворителя, позволяет изготавливать трубы из полиэтилена для бытовых и промышленных потребителей.
  • В строительной отрасли используются шумоизолирующие качества полиэтилена, его низкая теплопроводность. Эти свойства пригодились при изготовлении на его основе материалов для утепления жилых и промышленных объектов. Полиэтилен технический используется для изоляции тепловых трасс, в машиностроении и пр.
  • Не менее устойчив материал к агрессивным средам химической промышленности, трубы из полиэтилена применяются в лабораториях и химических производствах.
  • В медицине полиэтилен полезен в виде перевязочных материалов, протезов конечностей, используют его в стоматологии и т.д.

Способы переработки

В зависимости от того каким способом было переработано гранулированное сырье, будет зависеть какой марки полиэтилен будет получен. Распространенные способы:

  • Экструзия (выдавливание). Применяется для упаковочных и других видов пленок, листового материала для строительства и отделки, изготовления кабелей, производится рукав полиэтиленовый и прочие изделия.
  • Литье, способом. В основном используется для изготовления упаковочных материалов, боксов и т.д.
  • Экструзионно-выдувной, ротационный. С помощью этого способа получают объемные емкости, крупногабаритную тару, сосуды.
  • Армирование. По определенной технологии в формируемую массу полиэтилена закладываются усиливающие элементы (металл), что позволяет получить строительный материал повышенной прочности, но с меньшей стоимостью.

Из чего делают полиэтилен, кроме основных составляющих веществ? Обязательным является катализатор процесса и добавки, меняющие свойства, качества готового материала.

Вторичная переработка

Стойкость полиэтилена - это его плюс в качестве потребительского товара и его минус, как одного из главных загрязняющих окружающую среду факторов. На сегодняшний день важным становится переработка отходов - рециклинг. Все марки полиэтилена могут быть утилизированы и повторно превращены в гранулированное сырье, из которого можно делать множество востребованных товаров народного и промышленного потребления.

Полиэтиленовые крышки, пакеты, бутылки будут разлагаться на свалке не одну сотню лет, а накопленные отходы отравляют природные жизненно важные ресурсы. Мировая практика демонстрирует рост количества перерабатывающих полиэтилен предприятий. Собирая фактически мусор, в таких компаниях проводят его санацию, дробят. Таким образом, происходит экономия ресурсов, охрана окружающей среды и производство востребованной продукции.

При покупке одежды и разных тканевых изделий мы все чаще сталкиваемся с таким материалом, как полиэстер. Что за ткань, и каковы ее преимущества - описано в этой статье.

Что это такое

Это синтетическая ткань, которая производится из полиэфирных волокон, обладающих способностью сохранять первоначальную форму при нагревании не выше 40 градусов. Поэтому ткань полиэстер рекомендуется стирать при температуре воды до 40 ºС.

Синтетические изделия имеют отличные эксплуатационные качества, легко стираются и устойчивы к воздействию прямых солнечных лучей. Также ткань полиэстер обладает охлаждающим эффектом, благодаря чему она широко применяется для пошива одежды. Эта ткань по внешнему виду напоминает обычную шерсть, но, судя по характеристикам, больше похожа на хлопок.

В современной текстильной промышленности все чаще используют именно полиэстер. Что это за ткань - хорошо знает каждый человек. Постельное белье, одежда, занавески и даже матерчатые игрушки делают из синтетической ткани.

Свойства полиэстеровой ткани

Ткань полиэстер обладает такими свойствами:

  • высокая прочность;
  • большая износостойкость по сравнению с натуральными тканями;
  • высокая устойчивость к ультрафиолетовым лучам и теплу;
  • не мнется;
  • отлично сохраняет форму;
  • легко стирается и быстро высыхает;
  • не требует специального ухода.

Состав ткани полиэстер

В чистом виде ткань полиэстер встречается очень редко. В основном его добавляют в состав других тканей.

Чаще всего полиэстер добавляют в вискозу. Таким образом удается придать ткани прочность, эластичность и повысить износоустойчивость.

Если к вискозе и полиэстеру добавляют еще эластан, получается синтетический материал под названием «микромасло». Из ткани такого состава шьют блузы, легкие кофточки, летние платья и т. д.

Хорошими качествами обладает ткань, состоящая из полиэстера и хлопка. Такой материал очень прочный, хорошо носится и стирается, быстро сохнет и не растягивается после длительной носки.

Если говорить о ткани, состоящей на 100% из полиэстера, то за мягкость и исключительный внешний вид ее называют «декоративным шелком».

Изготовление

Полиэстер делают из материала под названием полиамид. Он представляет собой пластмассу, которую получают на основе синтетических высокомолекулярных соединений. Первый синтетический полиамид получили в 1862 году. Но массовое производство синтетического материала начали только в середине XX века. Сначала из полиэстера изготавливали разные упаковочные изделия, липкую ленту, мешки и контейнеры для хранения продукции.

Уникальный химический состав, низкая стоимость и практичность в использовании сделали очень востребованным такой материал как полиэстер. Что за ткань - вскоре узнали все страны мира. Из этого материала начали массово шить шторы, наволочки, нижнее белье, скатерти, драпировки. Даже ковры и обивку для мягкой мебели стали делать из полиэстера.

На данный момент полиэстеровая ткань пользуется большим спросом и используется во многих отраслях производства.

Применение

В наше время невозможно найти сферу человеческой деятельности, в которой не применялся бы этот материал. Ткани полиэстер производятся в огромном количестве по всему миру. Большие объемы производства обусловлены активным спросом на продукцию из синтетического материала.

Из полиэстера часто шьют разную одежду, комплекты постельного белья, покрывала, упаковочные чехлы, парикмахерские накидки, спецодежду для сотрудников разных предприятий, тюли, шторы.

Также синтетическую ткань используют для производства специфической продукции: спецодежды и сумок для альпинистов, вывесок, разных декораций, ширм, зонтов.

Применение полиэстеровой ткани во многом зависит от типа нитки. Так, из гладких синтетических нитей производят гардины, тюли, трикотаж, зонтичные и плащевые ткани. Текстурованные нити в основном используют для изготовления костюмных и плательных тканей.

Преимущества и недостатки

Материал, состоящий на 100% из полиэстера, имеет такие преимущества:

  1. Красивый внешний вид и необычный блеск поверхности ткани.
  2. Полиэстеровая ткань легко поддается окрашиванию, благодаря чему производители имеют возможность разнообразить изделия из этого материала.
  3. Большое разнообразие фактур: тонкий или плотный материал, ткань с глянцевой или матовой поверхностью.
  4. Ткань приятна на ощупь.
  5. Синтетические изделия имеют длительный срок службы. Одежда и постельное белье не выцветают и не теряют форму даже после многочисленных стирок.
  6. Незначительный вес ткани тонкой фактуры и свойство сохранять форму, что очень важно для дизайнеров одежды. Эти качества позволяют создавать сложные модели со складками.
  7. Низкие затраты по уходу за синтетическими изделиями.
  8. Способность быстро впитывать влагу, пот и высыхать за незначительное количество времени.
  9. Низкая стоимость изделий по сравнению с аналогами из натуральной ткани.

Недостатки материала:

  1. Не следует забывать, что полиэстер - это синтетика. Одежда из этой ткани не обеспечивает нормальный воздухообмен. Поэтому синтетическая одежда не подходит для ношения в жаркие летние дни.
  2. Возможность возникновения аллергических высыпаний на коже. Не всем людям подходит одежда из синтетической ткани. Иногда бывают ситуации, когда после ношения одежды из полиэстера возникают высыпания или опрелости. Поэтому людям с чувствительной кожей врачи рекомендуют покупать одежду из натуральных тканей.
  3. Длительное ношение одежды из полиэстера нарушает нормальное потоотделение и процессы, которые происходят через кожные поры.